ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of a novel MPGD-based drift chamber for the NSCL/FRIB S800 spectrometer

143   0   0.0 ( 0 )
 نشر من قبل Marco Cortesi Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The performance of a novel tracking detector developed for the focal plane of the NSCL/FRIB S800 magnetic spectrometer is presented. The detector comprises a large-area drift chamber equipped with a hybrid Micro-Pattern Gaseous Detector (MPGD)-based readout. The latter consists of a position-sensitive Micromegas detector preceded by a two-layer M-THGEM multiplier as a pre-amplification stage. The signals from the Micromegas readout are processed by a data acquisition system based on the General Electronics for TPC (GET). The drift chamber has an effective area of around 60x30 cm^2, which matches to the very large acceptance of the S800 spectrometer. This work discusses in detail the results of performance evaluation tests carried out with a low-energy alpha-particles source and with high-energy heavy-ion beams with the detector installed at the S800 focal plane. In this latter case, the detector was irradiated with a 150 MeV/u 78Kr36+ beam as well as a heavy-ion fragmentation cocktail beam produced by the 78Kr36+ beam impinging on a thin beryllium target. Sub-millimeter position resolution is obtained in both dispersive and non-dispersive directions.

قيم البحث

اقرأ أيضاً

The architecture of the novel MPGD-based photon detectors of COMPASS RICH-1 consists in a large-size hybrid MPGD multilayer layout combining two layers of Thick-GEMs and a bulk resistive MICROMEGAS. Concerning biasing voltage, the Thick-GEMs are segm ented in order to reduce the energy released in case of occasional discharges, while the MICROMEGAS anode is segmented in pads individually biased at positive voltage, while the micromesh is grounded. In total, there are ten different electrode types and more than 20000 electrodes supplied by more than 100 HV channels. Commercial power supply units are used. The original elements of the power supply system are the architecture of the voltage distribution net, the compensation, by voltage adjustment, of the effects of pressure and temperature variation affecting the detector gain and a sophisticated control software, which allows to protect the detectors against errors by the operator, to monitor and log voltages and current at 1 Hz rate and to automatically react to detector misbehaviors. The HV system and its performance are described in detail as well as the electrical stability of the detector during the operation at COMPASS.
The novel MPGD-based photon detectors of COMPASS RICH-1 consist of large-size hybrid MPGDs with multi-layer architecture including two layers of Thick-GEMs and a bulk resistive MicroMegas. The top surface of the first THGEM is coated with a CsI film which also acts as photo-cathode. These detectors have been successfully in operation at COMPASS since 2016. Concerning bias-voltage supply, the Thick-GEMs are segmented in order to reduce the energy released in case of occasional discharges, while the MicroMegas anode is segmented into pads individually biased with positive voltage while the micromesh is grounded. In total, there are about ten different electrode types and more than 20000 electrodes supplied by more than 100 HV channels, where appropriate correlations among the applied voltages are required for the correct operation of the detectors. Therefore, a robust control system is mandatory, implemented by a custom designed software package, while commercial power supply units are used. This sophisticated control system allows to protect the detectors against errors by the operator, to monitor and log voltages and currents at 1 Hz rate, and automatically react to detector misbehaviour. In addition, a voltage compensation system has been developed to automatically adjust the biasing voltage according to environmental pressure and temperature variations, to achieve constant gain over time. This development answers to a more general need. In fact, voltage compensation is always a requirement for the stability of gaseous detectors and its need is enhanced in multi-layer ones. In this paper, the HV system and its performance are described in details, as well as the stability of the novel MPGD-based photon detectors during the physics data taking at COMPASS.
84 - X. Wang , G. Konrad , 2012
We propose a new type of momentum spectrometer, which uses the RxB drift effect to disperse the charged particles in a uniformly curved magnetic field. This kind of RxB spectrometer is designed for the momentum analyses of the decay electrons and pro tons in the PERC (Proton and Electron Radiation Channel) beam station, which provides a strong magnetic field to guide the charged particles in the instrument. Instead of eliminating the guiding field, the RxB spectrometer evolves the field gradually to the analysing field, and the charged particles can be adiabatically transported during the dispersion and detection. The drifts of the particles have similar properties as their dispersion in the normal magnetic spectrometer. Besides, the RxB spectrometer is especially ideal for the measurements of particles with low momenta and relative large incident angles. We present a design of the RxB spectrometer, which can be used in PERC. The resolution of the momentum spectra can reach 14.4 keV/c, if the particle position measurements have a resolution of 1 mm.
After pioneering gaseous detectors of single photon for RICH applications using CsI solid state photocathodes in MWPCs within the RD26 collaboration and by the constructions for the RICH detector of the COMPASS experiment at CERN SPS, in 2016 we have upgraded COMPASS RICH by novel gaseous photon detectors based on MPGD technology. Four novel photon detectors, covering a total active area of 1.5~m$^2$, have been installed in order to cope with the challenging efficiency and stability requirements of the COMPASS physics programme. They are the first application in an experiment of MPGD-based single photon detectors. All aspects of the upgrade are presented, including engineering, mass production, quality assessment and performance. Perspectives for further developments in the field of gaseous single photon detectors are also indicated.
After pioneering gaseous detectors of single photon for RICH applications using CsI solid state photocathodes in MWPCs within the RD26 collaboration and by the constructions for the RICH detector of the COMPASS experiment at CERN SPS, in 2016 we have upgraded COMPASS RICH by novel gaseous photon detectors based on MPGD technology. Four novel photon detectors, covering a total active area of 1.5~m$^2$, have been installed in order to cope with the challenging efficiency and stability requirements of the COMPASS physics programme. These detectors are the first application in an experiment of MPGD-based single photon detectors. All aspects of the upgrade are presented, including engineering, mass production, quality assessment and performance. Perspectives for further developments in the field of gaseous single photon detectors are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا