ﻻ يوجد ملخص باللغة العربية
The classical biophysical Morris-Lecar model of neuronal excitability predicts that upon stimulation of the neuron with a sufficiently large constant depolarizing current there exists a finite interval of the current values where periodic spike generation occurs. Above the upper boundary of this interval, there is four-stage damping of the spike amplitude: 1) minor primary damping, which reflects a typical transient to stationary dynamic state, 2) plateau of nearly undamped periodic oscillations, 3) strong damping, and 4) reaching a constant asymptotic value of the neuron potential. We have shown that in the vicinity of the asymptote the Morris-Lecar equations can be reduced to the standard equation for exponentially damped harmonic oscillations. Importantly, all coefficients of this equation can be explicitly expressed through parameters of the original Morris-Lecar model, enabling direct comparison of the numerical and analytical solutions for the neuron potential dynamics at later stages of the spike amplitude damping.
We show that the stochastic Morris-Lecar neuron, in a neighborhood of its stable point, can be approximated by a two-dimensional Ornstein-Uhlenbeck (OU) modulation of a constant circular motion. The associated radial OU process is an example of a lea
Simulating and imitating the neuronal network of humans or mammals is a popular topic that has been explored for many years in the fields of pattern recognition and computer vision. Inspired by neuronal conduction characteristics in the primary visua
During wakefulness and deep sleep brain states, cortical neural networks show a different behavior, with the second characterized by transients of high network activity. To investigate their impact on neuronal behavior, we apply a pairwise Ising mode
One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cel
The input-output behaviour of the Wiener neuronal model subject to alternating input is studied under the assumption that the effect of such an input is to make the drift itself of an alternating type. Firing densities and related statistics are obta