ترغب بنشر مسار تعليمي؟ اضغط هنا

Review of deformation theory II: a homotopical approach

321   0   0.0 ( 0 )
 نشر من قبل Yunhe Sheng
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a general treatment of deformation theory from the point of view of homotopical algebra following Hinich, Manetti and Pridham. In particular, we show that any deformation functor in characteristic zero is controlled by a certain differential graded Lie algebra defined up to homotopy, and also formulate a noncommutative analogue of this result valid in any characteristic.



قيم البحث

اقرأ أيضاً

141 - Donald Yau 2018
Algebraic quantum field theory and prefactorization algebra are two mathematical approaches to quantum field theory. In this monograph, using a new coend definition of the Boardman-Vogt construction of a colored operad, we define homotopy algebraic q uantum field theories and homotopy prefactorization algebras and investigate their homotopy coherent structures. Homotopy coherent diagrams, homotopy inverses, A-infinity-algebras, E-infinity-algebras, and E-infinity-modules arise naturally in this context. In particular, each homotopy algebraic quantum field theory has the structure of a homotopy coherent diagram of A-infinity-algebras and satisfies a homotopy coherent version of the causality axiom. When the time-slice axiom is defined for algebraic quantum field theory, a homotopy coherent version of the time-slice axiom is satisfied by each homotopy algebraic quantum field theory. Over each topological space, every homotopy prefactorization algebra has the structure of a homotopy coherent diagram of E-infinity-modules over an E-infinity-algebra. To compare the two approaches, we construct a comparison morphism from the colored operad for (homotopy) prefactorization algebras to the colored operad for (homotopy) algebraic quantum field theories and study the induced adjunctions on algebras.
We present a novel approach to the problem of integrating homotopy Lie algebras by representing the Maurer-Cartan space functor with a universal cosimplicial object. This recovers Getzlers original functor but allows us to prove the existence of addi tional, previously unknown, structures and properties. Namely, we introduce a well-behaved left adjoint functor, we establish functoriality with respect to infinity-morphisms, and we construct a coherent hierarchy of higher Baker-Campbell-Hausdorff formulas. Thanks to these tools, we are able to establish the most important results of higher Lie theory. We use the recent developments of the operadic calculus, which leads us to explicit tree-wise formulas at all stage. We conclude by applying this theory to rational homotopy theory: the left adjoint functor is shown to provide us with homotopy Lie algebra models for topological spaces which faithfully capture their rational homotopy type.
We establish a formal framework for Rogness homotopical Galois theory and adapt it to the context of motivic spaces and spectra. We discuss examples of Galois extensions between Eilenberg-MacLane motivic spectra and between the Hermitian and algebraic K-theory spectra.
For each prime $p$, we define a $t$-structure on the category $widehat{S^{0,0}}/tautext{-}mathbf{Mod}_{harm}^b$ of harmonic $mathbb{C}$-motivic left module spectra over $widehat{S^{0,0}}/tau$, whose MGL-homology has bounded Chow-Novikov degree, such that its heart is equivalent to the abelian category of $p$-completed $BP_*BP$-comodules that are concentrated in even degrees. We prove that $widehat{S^{0,0}}/tautext{-}mathbf{Mod}_{harm}^b$ is equivalent to $mathcal{D}^b({{BP}_*{BP}text{-}mathbf{Comod}}^{{ev}})$ as stable $infty$-categories equipped with $t$-structures. As an application, for each prime $p$, we prove that the motivic Adams spectral sequence for $widehat{S^{0,0}}/tau$, which converges to the motivic homotopy groups of $widehat{S^{0,0}}/tau$, is isomorphic to the algebraic Novikov spectral sequence, which converges to the classical Adams-Novikov $E_2$-page for the sphere spectrum $widehat{S^0}$. This isomorphism of spectral sequences allows Isaksen and the second and third authors to compute the stable homotopy groups of spheres at least to the 90-stem, with ongoing computations into even higher dimensions.
296 - Gregory Ginot , Sinan Yalin 2019
The main purpose of this article is to develop an explicit derived deformation theory of algebraic structures at a high level of generality, encompassing in a common framework various kinds of algebras (associative, commutative, Poisson...) or bialge bras (associative and coassociative, Lie, Frobenius...), that is algebraic structures parametrized by props. A central aspect is that we define and study moduli spaces of deformations of algebraic structures up to quasi-isomorphisms (and not just isotopies or isomorphisms). To do so, we implement methods coming from derived algebraic geometry, by encapsulating these deformation theories as classifying (pre)stacks with good infinitesimal properties and %derived formal geometry, by means of derived formal moduli problems and derived formal groups. In particular, we prove that the Lie algebra describing the deformation theory of an object in a given $infty$-category of dg algebras can be obtained equivalently as the tangent complex of loops on a derived quotient of this moduli space by the homotopy automorphims of this object. Moreover, we provide explicit formulae for such derived deformation problems of algebraic structures up to quasi-isomorphisms and relate them in a precise way to other standard deformation problems of algebraic structures. This relation is given by a fiber sequence of the associated dg-Lie algebras of their deformation complexes. Our results provide simultaneously a vast generalization of standard deformation theory of algebraic structures which is suitable (and needed) to set up algebraic deformation theory both at the $infty$-categorical level and at a higher level of generality than algebras over operads. In addition, we study a general criterion to compare formal moduli problems of different algebraic structures and apply our formalism to $E_n$-algebras and bialgebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا