ﻻ يوجد ملخص باللغة العربية
We introduce the Subspace Power Method (SPM) for calculating the CP decomposition of low-rank even-order real symmetric tensors. This algorithm applies the tensor power method of Kolda-Mayo to a certain modified tensor, constructed from a matrix flattening of the original tensor, and then uses deflation steps. Numerical simulations indicate SPM is roughly one order of magnitude faster than state-of-the-art algorithms, while performing robustly for low-rank tensors subjected to additive noise. We obtain rigorous guarantees for SPM regarding convergence and global optima, for tensors of rank up to roughly the square root of the number of tensor entries, by drawing on results from classical algebraic geometry and dynamical systems. In a second contribution, we extend SPM to compute De Lathauwers symmetric block term tensor decompositions. As an application of the latter decomposition, we provide a method-of-moments for generalized principal component analysis.
We consider the problem of decomposing a real-valued symmetric tensor as the sum of outer products of real-valued, pairwise orthogonal vectors. Such decompositions do not generally exist, but we show that some symmetric tensor decomposition problems
In this paper we study the problem of recovering a tensor network decomposition of a given tensor $mathcal{T}$ in which the tensors at the vertices of the network are orthogonally decomposable. Specifically, we consider tensor networks in the form of
We consider the problem of decomposing higher-order moment tensors, i.e., the sum of symmetric outer products of data vectors. Such a decomposition can be used to estimate the means in a Gaussian mixture model and for other applications in machine le
Several tensor eigenpair definitions have been put forth in the past decade, but these can all be unified under generalized tensor eigenpair framework, introduced by Chang, Pearson, and Zhang (2009). Given mth-order, n-dimensional real-valued symmetr
We propose a new algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this as a system of polynomial equations allows us to levera