ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe

92   0   0.0 ( 0 )
 نشر من قبل Richard Leske
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (ISOIS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second perihelion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ~0.3 particles (cm^2 sr s MeV)^-1, and was undetectable above background levels at energies above 10 MeV or in particle detectors at 1 au. It was strongly anisotropic, with intensities flowing outward from the Sun up to 30 times greater than those flowing inward persisting throughout the event. Temporal association between particle increases and small brightness surges in the extreme-ultraviolet observed by the Solar TErrestrial RElations Observatory, which were also accompanied by type III radio emission seen by the Electromagnetic Fields Investigation on PSP, indicates that the source of this event was an active region nearly 80 degrees east of the nominal PSP magnetic footpoint. This suggests that the field lines expanded over a wide longitudinal range between the active region in the photosphere and the corona.



قيم البحث

اقرأ أيضاً

Context. The remote observations of solar flare ion acceleration are rather limited. There are theoretical predictions for signatures of ion acceleration in EUV line profiles. Previous tests involve observations of flares with no evidence for energet ic ions. Aims. We aim to examine a source flare of impulsive (or 3He-rich) solar energetic particle events with EUV line spectroscopy. Methods. We inspect all (90+) reported 3He-rich flares of previous solar cycle 23 and find only four (recurrent) jets in the field of view of SOHO CDS. The jet with the most suitable spatial and temporal coverage is analyzed in detail. Results. Two enhanced (non-thermal) line broadenings are observed in the cooler chromospheric / transition-region lines and they are localized near the site where the closed magnetic loops reconnect with the open magnetic field lines. Both enhanced broadenings are found in the sites with redshifts in the lines, surrounded by the region with blueshifts. One enhanced line broadening is associated with a small flare without energetic particle signatures while another occurs just after the particle acceleration signatures of the main flare terminated. Conclusions. The observed excess broadening appears to be not directly related to the energetic ion production and motions. Further investigations where the critical impulsive phase of the flare is covered are required, ideally with high-resolution spectrometers intentionally pointed to the 3He-rich solar energetic particle source.
We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric d istance of 27.8 solar radii ($R_odot{}$). Energy flux was calculated based on electron parameters (density $n_e$, core electron temperature $T_{c}$, and suprathermal electron temperature $T_{h}$) obtained from the simplified analysis of the plasma quasi-thermal noise (QTN) spectrum measured by RFS/FIELDS and the bulk proton parameters (bulk speed $V_p$ and temperature $T_p$) measured by the Faraday Cup onboard PSP, SPC/SWEAP. Combining observations from E01, E02, E04, and E05, the averaged energy flux value normalized to 1 $R_odot{}$ plus the energy necessary to overcome the solar gravitation ($W_{R_odot{}}$) is about 70$pm$14 $W m^{-2}$, which is similar to the average value (79$pm$18 $W m^{-2}$) derived by Le Chat et al from 24-year observations by Helios, Ulysses, and Wind at various distances and heliolatitudes. It is remarkable that the distributions of $W_{R_odot{}}$ are nearly symmetrical and well fitted by Gaussians, much more so than at 1 AU, which may imply that the small heliocentric distance limits the interactions with transient plasma structures.
As fundamental parameters of the Sun, the Alfven radius and angular momentum loss determine how the solar wind changes from sub-Alfvenic to super-Alfvenic and how the Sun spins down. We present an approach to determining the solar wind angular moment um flux based on observations from Parker Solar Probe (PSP). A flux of about $0.15times10^{30}$ dyn cm sr$^{-1}$ near the ecliptic plane and 0.7:1 partition of that flux between the particles and magnetic field are obtained by averaging data from the first four encounters within 0.3 au from the Sun. The angular momentum flux and its particle component decrease with the solar wind speed, while the flux in the field is remarkably constant. A speed dependence in the Alfven radius is also observed, which suggests a rugged Alfven surface around the Sun. Substantial diving below the Alfven surface seems plausible only for relatively slow solar wind given the orbital design of PSP. Uncertainties are evaluated based on the acceleration profiles of the same solar wind streams observed at PSP and a radially aligned spacecraft near 1 au. We illustrate that the angular momentum paradox raised by Reville et al. can be removed by taking into account the contribution of the alpha particles. The large proton transverse velocity observed by PSP is perhaps inherent in the solar wind acceleration process, where an opposite transverse velocity is produced for the alphas with the angular momentum conserved. Preliminary analysis of some recovered alpha parameters tends to agree with the results.
193 - F. Pecora , S. Servidio , A. Greco 2021
Energetic particle transport in the interplanetary medium is known to be affected by magnetic structures. It has been demonstrated for solar energetic particles in near-Earth orbit studies, and also for the more energetic cosmic rays. In this paper, we show observational evidence that intensity variations of solar energetic particles can be correlated with the occurrence of helical magnetic flux tubes and their boundaries. The analysis is carried out using data from Parker Solar Probe orbit 5, in the period 2020 May 24 to June 2. We use FIELDS magnetic field data and energetic particle measurements from the Integrated Science Investigation of the Sun (isois) suite on the Parker Solar Probe. We identify magnetic flux ropes by employing a real-space evaluation of magnetic helicity, and their potential boundaries using the Partial Variance of Increments method. We find that energetic particles are either confined within or localized outside of helical flux tubes, suggesting that the latter act as transport boundaries for particles, consistent with previously developed viewpoints.
The Solar Wind Electrons Alphas and Protons experiment on the Parker Solar Probe (PSP) mission measures the three-dimensional electron velocity distribution function. We derive the parameters of the core, halo, and strahl populations utilizing a comb ination of fitting to model distributions and numerical integration for $sim 100,000$ electron distributions measured near the Sun on the first two PSP orbits, which reached heliocentric distances as small as $sim 0.17$ AU. As expected, the electron core density and temperature increase with decreasing heliocentric distance, while the ratio of electron thermal pressure to magnetic pressure ($beta_e$) decreases. These quantities have radial scaling consistent with previous observations farther from the Sun, with superposed variations associated with different solar wind streams. The density in the strahl also increases; however, the density of the halo plateaus and even decreases at perihelion, leading to a large strahl/halo ratio near the Sun. As at greater heliocentric distances, the core has a sunward drift relative to the proton frame, which balances the current carried by the strahl, satisfying the zero-current condition necessary to maintain quasi-neutrality. Many characteristics of the electron distributions near perihelion have trends with solar wind flow speed, $beta_e$, and/or collisional age. Near the Sun, some trends not clearly seen at 1 AU become apparent, including anti-correlations between wind speed and both electron temperature and heat flux. These trends help us understand the mechanisms that shape the solar wind electron distributions at an early stage of their evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا