ﻻ يوجد ملخص باللغة العربية
The systematics of experimental energy differences between the levels of the ground state band and the gamma-1 band in even-even nuclei are studied as a function of the angular momentum L, demonstrating a decrease of the energy differences with increasing L, in contrast to what is seen in vibrational, gamma-unstable, and triaxial nuclei. After a short review of the relevant predictions of several simple collective models, it is shown that this decrease is caused in the framework of the proxy-SU(3) scheme by the same three-body and/or four body operators which break the degeneracy between the ground state band and the gamma-1 band, predicting in parallel the correct form of odd-even staggering within the gamma-1 bands.
The rapid increase of computational power over the last several years has allowed detailed microscopic investigations of the structure of many nuclei in terms of Relativistic Mean Field theories as well as in the framework of the no-core Shell Model.
Symmetries are manifested in nature through degeneracies in the spectra of physical systems. In the case of heavy deformed nuclei, when described in the framework of the Interacting Boson Model, within which correlated proton (neutron) pairs are appr
We present a review of the pseudo-SU(3) shell model and its application to heavy deformed nuclei. The model have been applied to describe the low energy spectra, B(E2) and B(M1) values. A systematic study of each part of the interaction within the Ha
The proxy-SU(3) symmetry has been proposed for spin-orbit like nuclear shells using the asymptotic deformed oscillator basis for the single particle orbitals, in which the restoration of the symmetry of the harmonic oscillator shells is achieved by a
We present an analysis based on the deformed Quasi Particle Random Phase Approximation, on top of a deformed Hartree-Fock-Bogoliubov description of the ground state, aimed at studying the isoscalar monopole and quadrupole response in a deformed nucle