ﻻ يوجد ملخص باللغة العربية
There are many proteins or protein complexes which have multiple DNA binding domains. This allows them to bind to multiple points on a DNA molecule (or chromatin fibre) at the same time. There are also many proteins which have been found to be able to compact DNA in vitro, and many others have been observed in foci or puncta when fluorescently labelled and imaged in vivo. In this work we study, using coarse-grained Langevin dynamics simulations, the compaction of polymers by simple model proteins and a phenomenon known as the bridging-induced attraction. The latter is a mechanism observed in previous simulations [Brackley et al., Proc. Natl. Acad. Sci. USA 110 (2013)], where proteins modelled as spheres form clusters via their multivalent interactions with a polymer, even in the absence of any explicit protein-protein attractive interactions. Here we extend this concept to consider more detailed model proteins, represented as simple patchy particles interacting with a semi-flexible bead-and-spring polymer. We find that both the compacting ability and the effect of the bridging-induced attraction depend on the valence of the model proteins. These effects also depend on the shape of the protein, which determines its ability to form bridges.
We study the dynamics of a knot in a semiflexible polymer confined to a narrow channel of width comparable to the polymers persistence length. Using a combination of Brownian dynamics simulations and a coarse-grained stochastic model, we characterize
An Ising--like model of proteins is used to investigate the mechanical unfolding of the Green Fluorescent Protein along different directions. When the protein is pulled from its ends, we recover the major and minor unfolding pathways observed in expe
We introduce a variational approximation to the microscopic dynamics of rare conformational transitions of macromolecules. Within this framework it is possible to simulate on a small computer cluster reactions as complex as protein folding, using sta
We study the adsorption of charged patchy particle models (CPPMs) on a thin film of a like-charged and dense polyelectrolyte (PE) brush (of 50 monomers per chain) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our
Structural changes in giant DNA induced by the addition of the flexible polymer PEG were examined by the method of single-DNA observation. In dilute DNA conditions, individual DNA assumes a compact state via a discrete coil-globule transition, wherea