ترغب بنشر مسار تعليمي؟ اضغط هنا

ATOM: Commit Message Generation Based on Abstract Syntax Tree and Hybrid Ranking

73   0   0.0 ( 0 )
 نشر من قبل Shangqing Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Commit messages record code changes (e.g., feature modifications and bug repairs) in natural language, and are useful for program comprehension. Due to the frequent updates of software and time cost, developers are generally unmotivated to write commit messages for code changes. Therefore, automating the message writing process is necessitated. Previous studies on commit message generation have been benefited from generation models or retrieval models, but the code structure of changed code, i.e., AST, which can be important for capturing code semantics, has not been explicitly involved. Moreover, although generation models have the advantages of synthesizing commit messages for new code changes, they are not easy to bridge the semantic gap between code and natural languages which could be mitigated by retrieval models. In this paper, we propose a novel commit message generation model, named ATOM, which explicitly incorporates the abstract syntax tree for representing code changes and integrates both retrieved and generated messages through hybrid ranking. Specifically, the hybrid ranking module can prioritize the most accurate message from both retrieved and generated messages regarding one code change. We evaluate the proposed model ATOM on our dataset crawled from 56 popular Java repositories. Experimental results demonstrate that ATOM increases the state-of-the-art models by 30.72% in terms of BLEU-4 (an accuracy measure that is widely used to evaluate text generation systems). Qualitative analysis also demonstrates the effectiveness of ATOM in generating accurate code commit messages.



قيم البحث

اقرأ أيضاً

Commit messages are natural language descriptions of code changes, which are important for program understanding and maintenance. However, writing commit messages manually is time-consuming and laborious, especially when the code is updated frequentl y. Various approaches utilizing generation or retrieval techniques have been proposed to automatically generate commit messages. To achieve a better understanding of how the existing approaches perform in solving this problem, this paper conducts a systematic and in-depth analysis of the state-of-the-art models and datasets. We find that: (1) Different variants of the BLEU metric are used in previous works, which affects the evaluation and understanding of existing methods. (2) Most existing datasets are crawled only from Java repositories while repositories in other programming languages are not sufficiently explored. (3) Dataset splitting strategies can influence the performance of existing models by a large margin. Some models show better performance when the datasets are split by commit, while other models perform better when the datasets are split by timestamp or by project. Based on our findings, we conduct a human evaluation and find the BLEU metric that best correlates with the human scores for the task. We also collect a large-scale, information-rich, and multi-language commit message dataset MCMD and evaluate existing models on this dataset. Furthermore, we conduct extensive experiments under different dataset splitting strategies and suggest the suitable models under different scenarios. Based on the experimental results and findings, we provide feasible suggestions for comprehensively evaluating commit message generation models and discuss possible future research directions. We believe this work can help practitioners and researchers better evaluate and select models for automatic commit message generation.
100 - Yanlin Wang , Hui Li 2021
Code completion has become an essential component of integrated development environments. Contemporary code completion methods rely on the abstract syntax tree (AST) to generate syntactically correct code. However, they cannot fully capture the seque ntial and repetitive patterns of writing code and the structural information of the AST. To alleviate these problems, we propose a new code completion approach named CCAG, which models the flattened sequence of a partial AST as an AST graph. CCAG uses our proposed AST Graph Attention Block to capture different dependencies in the AST graph for representation learning in code completion. The sub-tasks of code completion are optimized via multi-task learning in CCAG, and the task balance is automatically achieved using uncertainty without the need to tune task weights. The experimental results show that CCAG has superior performance than state-of-the-art approaches and it is able to provide intelligent code completion.
Automatic generation of high-quality commit messages for code commits can substantially facilitate software developers works and coordination. However, the semantic gap between source code and natural language poses a major challenge for the task. Se veral studies have been proposed to alleviate the challenge but none explicitly involves code contextual information during commit message generation. Specifically, existing research adopts static embedding for code tokens, which maps a token to the same vector regardless of its context. In this paper, we propose a novel Contextualized code representation learning strategy for commit message Generation (CoreGen). CoreGen first learns contextualized code representations which exploit the contextual information behind code commit sequences. The learned representations of code commits built upon Transformer are then fine-tuned for downstream commit message generation. Experiments on the benchmark dataset demonstrate the superior effectiveness of our model over the baseline models with at least 28.18% improvement in terms of BLEU-4 score. Furthermore, we also highlight the future opportunities in training contextualized code representations on larger code corpus as a solution to low-resource tasks and adapting the contextualized code representation framework to other code-to-text generation tasks.
Code summarization aims to generate concise natural language descriptions of source code, which can help improve program comprehension and maintenance. Recent studies show that syntactic and structural information extracted from abstract syntax trees (ASTs) is conducive to summary generation. However, existing approaches fail to fully capture the rich information in ASTs because of the large size/depth of ASTs. In this paper, we propose a novel model CAST that hierarchically splits and reconstructs ASTs. First, we hierarchically split a large AST into a set of subtrees and utilize a recursive neural network to encode the subtrees. Then, we aggregate the embeddings of subtrees by reconstructing the split ASTs to get the representation of the complete AST. Finally, AST representation, together with source code embedding obtained by a vanilla code token encoder, is used for code summarization. Extensive experiments, including the ablation study and the human evaluation, on benchmarks have demonstrated the power of CAST. To facilitate reproducibility, our code and data are available at https://anonymous.4open.science/r/CAST/.
Developers often write low-quality code comments due to the lack of programming experience, which can reduce the efficiency of developers program comprehension. Therefore, developers hope that code comment generation tools can be developed to illustr ate the functionality and purpose of the code. Recently, researchers mainly model this problem as the neural machine translation problem and tend to use deep learning-based methods. In this study, we propose a novel method ComFormer based on Transformer and fusion method-based hybrid code presentation. Moreover, to alleviate OOV (out-of-vocabulary) problem and speed up model training, we further utilize the Byte-BPE algorithm to split identifiers and Sim_SBT method to perform AST Traversal. We compare ComFormer with seven state-of-the-art baselines from code comment generation and neural machine translation domains. Comparison results show the competitiveness of ComFormer in terms of three performance measures. Moreover, we perform a human study to verify that ComFormer can generate high-quality comments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا