ﻻ يوجد ملخص باللغة العربية
Numerous exotic candidates containing a heavy quark and anti-quark (the so-called $XYZ$ states) have been reported since the observation of the $X(3872)$ in 2003. For these systems a study of the implications of the heavy quark spin symmetry and its breaking is expected to provide useful guidance towards a better understanding of their nature. For instance, since the formation of the complete spin multiplets is described with the same parameter sets, in some cases the currently available experimental data on the $XYZ$ states allows us to predict properties of spin partner states. To illustrate this point we extract the parameters of the two $Z_b$ states by analyzing the most recent experimental data within an effective-field theory approach which treats both short-ranged contact interactions and the long-ranged one-pion/one-eta Goldstone boson exchanges (OPE/OEE) dynamically. The line shapes and pole positions of their spin partners are then predicted in a parameter-free way and await to be tested by future experimental data.
We propose novel triangle relations, not the well-known triangle singularity, for better understanding of the exotic XYZ states. Nine XYZ resonances, X(3872), Y(4230), Zc(3900), X(4012), Y(4360/4390), Zc(4020), X(4274), Y(4660), and Zcs(3985) have be
In recent years data have been accumulated at various experiments about states in the heavy quarkonium mass range that seem to be inconsistent with the most simple variants of the quark model. In this contribution it is demonstrated that most of thos
The branching fractions of the $Upsilon(1S)$ inclusive decays into final states with a $J/psi$ or a $psi(2S)$ are measured with improved precision to be $BR(Upsilon(1S)to J/psi + {rm anything})=(5.25pm 0.13(mathrm{stat.})pm 0.25(mathrm{syst.}))times
In a local gauge-invariant theory with massless Dirac fermions a symmetry of the Lorentz-invariant fermion charge is larger than a symmetry of the Lagrangian as a whole. While the Dirac Lagrangian exhibits only a chiral symmetry, the fermion charge o
Quantum correlation of bipartite states (beyond entanglement) in presence of environment is studied for Heisenberg XYZ spin system. It is shown that if the system is allowed to exchange energy with environment, the initial state evolves and settles d