ترغب بنشر مسار تعليمي؟ اضغط هنا

Nucleus Capture by Macroscopic Dark Matter

153   0   0.0 ( 0 )
 نشر من قبل Joshua Berger
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a class of macroscopic dark matter with a large interaction strength with Standard Model particles, a nucleus could be captured by the dense, heavy dark matter as it traverses ordinary material. The radiated photon carries most of the binding energy and is a characteristic signature for dark matter detection. We develop analytic formulas and present numerical results for this radiative capture process in the low energy, non-dipole limit. Large-volume neutrino detectors like NO$ u$A, JUNO, DUNE and Super(Hyper)-K may detect multi-hit or single-hit radiative capture events and can search for dark matter up to one gram in mass.

قيم البحث

اقرأ أيضاً

We propose a new strategy to search for a particular type of dark matter via nuclear capture. If the dark matter particle carries baryon number, as motivated by a class of theoretical explanations of the matter-antimatter asymmetry of the universe, i t can mix with the neutron and be captured by an atomic nucleus. The resulting state de-excites by emitting a single photon or a cascade of photons with a total energy of up to several MeV. The exact value of this energy depends on the dark matter mass. We investigate the prospects for detecting dark matter capture signals in current and future neutrino and dark matter direct detection experiments.
Antimatter macroscopic dark matter (macros) refers to a generic class of antimatter dark matter candidates that interact with ordinary matter primarily through annihilation with large cross-sections. A combination of terrestrial, astrophysical, and c osmological observations constrain a portion of the anti-macro parameter space. However, a large region of the parameter space remains unconstrained, most notably for nuclear-dense objects.
We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into accou nt dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross sections based on the observation of old neutron stars with strong dark matter self-interactions. We show that for a dark matter density of $~10^3$ GeV/cm$^3$ and dark matter mass $m_chi$ less than approximately 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for $m_chisim 10$ GeV when the dark matter interaction cross section with the nucleons ranges from $sigma_{chi n}sim 10^{-52}$ cm$^2$ to $10^{-57}$ cm$^2$, the dark matter self-interaction cross section limit is $sigma_{chichi}< 10^{-33}$ cm$^2$, which is about ten orders of magnitude stronger than the Bullet Cluster limit.
Dark matter can capture in neutron stars and heat them to observable luminosities. We study relativistic scattering of dark matter on highly degenerate electrons. We develop a Lorentz invariant formalism to calculate the capture probability of dark m atter that accounts for the relativistic motion of the target particles and Pauli exclusion principle. We find that the actual capture probability can be five orders of magnitude larger than the one estimated using a nonrelativistic approach. For dark matter masses $10~{rm eV}textup{--}10~{rm PeV}$, neutron star heating complements and can be more sensitive than terrestrial direct detection searches. The projected sensitivity regions exhibit characteristic features that demonstrate a rich interplay between kinematics and Pauli blocking of the DM--electron system. Our results show that old neutron stars could be the most promising target for discovering leptophilic dark matter.
DarkCapPy is a Python 3/Jupyter package for calculating rates associated with dark matter capture in the Earth, annihilation into light mediators, and the subsequent observable decay of the light mediators near the surface of the Earth. The package i ncludes a calculation of the Sommerfeld enhancement at the center of the Earth and the timescale for capture--annihilation equilibrium. The code is open source and can be modified for other compact astronomical objects and mediator spins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا