ﻻ يوجد ملخص باللغة العربية
Here we report the investigation of the anomalous Hall effect in the magnetically doped topological insulator (V,Bi,Sb)2Te3. We find it contains two contributions of opposite sign. Both components are found to depend differently on carrier density, leading to a sign inversion of the total anomalous Hall effect as a function of applied gate voltage. The two contributions are found to have different magnetization reversal fields, which in combination with a temperature dependent study points towards the coexistence of two ferromagnetic orders in the system. Moreover, we find that the sign of total anomalous Hall response of the system depends on the thickness and magnetic doping density of the magnetic layer. The thickness dependence suggests that the two ferromagnetic components originate from the surface and bulk of the magnetic topological insulator film. We believe that our observations provide insight on the magnetic behavior, and thus will contribute to an eventual understanding of the origin of magnetism in this material class. In addition, our data bears a striking resemblance to anomalous Hall signals often associated with skyrmion contributions. Our analysis provides a straightforward explanation for both the magnetic field dependence of the Hall signal and the observed change in sign without needing to invoke skyrmions, and thus suggest that caution is needed when making claims of effects from skyrmion phases.
The magnetic skyrmion is a topological magnetic vortex, and its topological nature is characterized by an index called skyrmion number which is a mapping of the magnetic moments defined on a two-dimensional space to a unit sphere. In three-dimensions
We show that skyrmions on the surface of a magnetic topological insulator may experience an attractive interaction that leads to the formation of a skyrmion-skyrmion bound state. This is in contrast to the case of skyrmions in a conventional chiral f
Topological transport phenomena in magnetic materials are a major topic of current condensed matter research. One of the most widely studied phenomena is the ``topological Hall effect (THE), which is generated via spin-orbit interactions between cond
We consider a magnetic skyrmion crystal formed at the surface of a topological insulator. Incorporating the exchange interaction between the helical Dirac surface states and the periodic Neel or Bloch skyrmion texture, we obtain the resulting electro
We study the quantum Hall effect of Dirac fermions on the surface of a Wilson-Dirac type topological insulator thin film in the strong topological insulating phase. Although a magnetic field breaks time reversal symmetry of the bulk, the surface stat