ترغب بنشر مسار تعليمي؟ اضغط هنا

Sardinia Radio Telescope observations of Local Group dwarf galaxies -- I. The cases of NGC6822, IC1613, and WLM

373   0   0.0 ( 0 )
 نشر من قبل Andrea Tarchi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Almost all dwarf galaxies in the Local Group that are not satellites of the Milky Way or M31, belong to either one of two highly-symmetric planes. It is still a matter of debate, whether these planar structures are dynamically stable or whether they only represent a transient alignment. Proper motions, if they could be measured, could help to discriminate between these scenarios. Such motions could be determined with multi-epoch Very Long Baseline Interferometry (VLBI) of sources that show emission from water and methanol at frequencies of 22 and 6.7 GHz, respectively. We report searches for such masers. We have mapped three Local Group galaxies, NGC6822, IC1613 and WLM in the bands covering the water vapor and methanol lines. These systems are members of the two above mentioned planes of galaxies. We have produced deep radio continuum (RC) maps and spectral line cubes. The former have been used to identify star forming regions and to derive global galactic star formation rates (SFRs). These SFRs turn out to be lower than those determined at other wavelengths in two of our sources. This indicates that dwarf galaxies may follow predictions on the RC-SFR relation only in individual regions of enhanced radio continuum emission, but not when considering the entire optical body of the sources. No methanol or water maser emission has been confidently detected, down to line luminosity limits of ~0.004 and 0.01 solar luminosities, respectively. This finding is consistent with the small sizes, low SFRs and metallicities of these galaxies.



قيم البحث

اقرأ أيضاً

118 - P. Gratier 2010
Do molecular clouds collapse to form stars at the same rate in all environments? In large spiral galaxies, the rate of transformation of H2 into stars (hereafter SFE) varies little. However, the SFE in distant objects (z~1) is much higher than in the large spiral disks that dominate the local universe. Some small local group galaxies share at least some of the characteristics of intermediate-redshift objects, such as size or color. Recent work has suggested that the Star Formation Efficiency (SFE, defined as the SFRate per unit H2) in local Dwarf galaxies may be as high as in the distant objects. A fundamental difficulty in these studies is the independent measure of the H2 mass in metal-deficient environments. At 490 kpc, NGC6822 is an excellent choice for this study; it has been mapped in the CO(2-1) line using the multibeam receiver HERA on the 30 meter IRAM telescope, yielding the largest sample of giant molecular clouds (GMCs) in this galaxy. Despite the much lower metallicity, we find no clear difference in the properties of the GMCs in NGC 6822 and those in the Milky Way except lower CO luminosities for a given mass. Several independent methods indicate that the total H2 mass in NGC 6822 is about 5 x 10^6 Msun in the area we mapped and less than 10^7 Msun in the whole galaxy. This corresponds to a NH2/ICO ~ 4 x 10^{21} cm^-2 /(Kkm/s) over large scales, such as would be observed in distant objects, and half that in individual GMCs. No evidence was found for H2 without CO emission. Our simulations of the radiative transfer in clouds are entirely compatible with these NH2/ICO values. The SFE implied is a factor 5 - 10 higher than what is observed in large local universe spirals.
170 - E. Egron , A. Pellizzoni , S. Loru 2016
In the frame of the Astronomical Validation activities for the 64m Sardinia Radio Telescope, we performed 5-22 GHz imaging observations of the complex-morphology supernova remnants (SNRs) W44 and IC443. We adopted innovative observing and mapping tec hniques providing unprecedented accuracy for single-dish imaging of SNRs at these frequencies, revealing morphological details typically available only at lower frequencies through interferometry observations. High-frequency studies of SNRs in the radio range are useful to better characterize the spatially-resolved spectra and the physical parameters of different regions of the SNRs interacting with the ISM. Furthermore, synchrotron-emitting electrons in the high-frequency radio band are also responsible for the observed high-energy phenomenology as -e.g.- Inverse Compton and bremsstrahlung emission components observed in gamma-rays, to be disentangled from hadron emission contribution (providing constraints on the origin of cosmic rays).
An optical monitoring survey in the nearby dwarf galaxies was carried out with the 2.5-m Isaac Newton Telescope (INT). 55 dwarf galaxies and four isolated globular clusters in the Local Group (LG) were observed with the Wide Field Camera (WFC). The m ain aims of this survey are to identify the most evolved asymptotic giant branch (AGB) stars and red supergiants at the end-point of their evolution based on their pulsational instability, use their distribution over luminosity to reconstruct the star formation history, quantify the dust production and mass loss from modelling the multi-wavelength spectral energy distributions, and relate this to luminosity and radius variations. In this first of a series of papers, we present the methodology of the variability survey and describe the photometric catalogue of Andromeda I (And I) dwarf galaxy as an example of the survey, and discuss the identified long period variable (LPV) stars. We detected 5581 stars and identified 59 LPV candidates within two half-light radii of the centre of And I. The amplitudes of these candidates range from 0.2 to 3 mag in the $i$-band. 75 % of detected sources and 98 % of LPV candidates are detected at mid-infrared wavelengths. We show evidence for the presence of dust-producing AGB stars in this galaxy including five extreme AGB (x-AGB) stars, and model some of their spectral energy distributions. A distance modulus of 24.41 mag for And I was determined based on the tip of the red giant branch (RGB). Also, a half-light radius of 3.2 arcmin is calculated.
99 - Azadeh Fattahi 2019
We study the Local Group (LG) dwarf galaxy population predicted by the apostle $Lambda$CDM cosmological hydrodynamics simulations. These indicate that: (i)~the total mass within $3$ Mpc of the Milky Way-Andromeda midpoint ($M_{rm 3Mpc}$) typically ex ceeds $sim 3$ times the sum of the virial masses ($M_{rm 200crit}$) of the two primaries and (ii)~the dwarf galaxy formation efficiency per unit mass is uniform throughout the volume. This suggests that the satellite population within the virial radii of the Milky Way and Andromeda should make up fewer than one third of all LG dwarfs within $3$ Mpc. This is consistent with the fraction of observed LG galaxies with stellar mass $M_*>10^7,M_{odot}$ that are satellites ($12$ out of $42$; i.e., $28$ per cent). For the apostle galaxy mass-halo mass relation, the total number of such galaxies further suggests a LG mass of $M_{rm 3 Mpc}sim 10^{13} , M_{odot}$. At lower galaxy masses, however, the observed satellite fraction is substantially higher ($42$ per cent for $M_*>10^5,M_{odot}$). If this is due to incompleteness in the field sample, then $sim 50$ dwarf galaxies at least as massive as the Draco dwarf spheroidal must be missing from the current LG {it field} dwarf inventory. The incompleteness interpretation is supported by the pronounced flattening of the LG luminosity function below $M_*sim 10^7, M_{odot}$, and by the scarcity of low-surface brightness LG field galaxies compared to satellites. The simulations indicate that most missing dwarfs should lie near the virial boundaries of the two LG primaries, and predict a trove of nearby dwarfs that await discovery by upcoming wide-field imaging surveys.
We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cl uster of galaxies. The data were acquired using the recently-commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1 deg x 1 deg centered on the radio source 3C 129. We modeled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster center. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source. If the magnetic field is at the equipartition value, we showed that the lifetimes of radiating electrons result in a radiative age for 3C 129 of t_syn = 267 +/- 26 Myrs. Assuming a linear projected length of 488 kpc for the tail, we deduced that 3C 129 is moving supersonically with a Mach number of M=v_gal/c_s=1.47. Linearly polarized emission was clearly detected for both 3C 129 and 3C 129.1. The linear polarization measured for 3C 129 reaches levels as high as 70% in the faintest region of the source where the magnetic field is aligned with the direction of the tail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا