ترغب بنشر مسار تعليمي؟ اضغط هنا

Hi-C 2.1 Observations of Small-Scale Miniature-Filament-Eruption-Like Cool Ejections in Active Region Plage

91   0   0.0 ( 0 )
 نشر من قبل Alphonse Sterling
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine 172 Ang ultra-high-resolution images of a solar plage region from the Hi-C 2.1 (Hi-C) rocket flight of 2018 May 29. Over its five-minute flight, Hi-C resolves a plethora of small-scale dynamic features that appear near noise level in concurrent Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) 171 Ang images. For ten selected events, comparisons with AIA images at other wavelengths and with the Interface Region Imaging Spectrograph (IRIS) images indicate that these features are cool (compared to the corona) ejections. Combining Hi-C 172 Ang, AIA 171 Ang, IRIS 1400 Ang, and H$alpha$, we see that these ten cool ejections are similar to the H$alpha$ dynamic fibrils and Ca ii anemone jets found in earlier studies. The front of some of our cool ejections are likely heated, showing emission in IRIS 1400 Ang. On average, these cool ejections have approximate widths: $3.2 pm 2.1$, (projected) maximum heights and velocities: $4.3 pm 2.5$ and $23 pm 6$ km/s, and lifetimes: $6.5 pm 2.4$ min. We consider whether these Hi-C features might result from eruptions of sub-minifilaments (smaller than the minifilaments that erupt to produce coronal jets). Comparisons with SDOs Helioseismic and Magnetic Imager (HMI) magnetograms do not show magnetic mixed-polarity neutral lines at these events bases, as would be expected for true scaled-do

قيم البحث

اقرأ أيضاً

We present high-resolution, high-cadence observations of six, fine-scale, on-disk jet-like events observed by the High-resolution Coronal Imager 2.1 (Hi-C 2.1) during its sounding-rocket flight. We combine the Hi-C 2.1 images with images from SDO/AIA , and IRIS, and investigate each events magnetic setting with co-aligned line-of-sight magnetograms from SDO/HMI. We find that: (i) all six events are jetlet-like (having apparent properties of jetlets), (ii) all six are rooted at edges of magnetic network lanes, (iii) four of the jetlet-like events stem from sites of flux cancelation between majority-polarity network flux and merging minority-polarity flux, and (iv) four of the jetlet-like events show brightenings at their bases reminiscent of the base brightenings in coronal jets. The average spire length of the six jetlet-like events (9,000$pm$3000km) is three times shorter than that for IRIS jetlets (27,000$pm$8000km). While not ruling out other generation mechanisms, the observations suggest that at least four of these events may be miniatur
A filament, a dense cool plasma supported by the magnetic fields in the solar corona, often becomes unstable and erupts. It is empirically known that the filament often demonstrates some activations such as a turbulent motion prior to eruption. In ou r previous study (Seki et al. 2017), we analysed the Doppler velocity of an H{alpha} filament and found that the standard deviation of the line-of-sight-velocity (LOSV) distribution in a filament, which indicates the increasing amplitude of the small-scale motions, increased prior to the onset of the eruption. Here, we present a further analysis on this filament eruption, which initiated approximately at 03:40UT on 2016 November 5 in the vicinity of NOAA AR 12605. It includes a coronal line observation and the extrapolation of the surrounding magnetic fields. We found that both the spatially averaged micro-turbulence inside the filament and the nearby coronal line emission increased 6 and 10 hours prior to eruption, respectively. In this event, we did not find any significant changes in the global potential-field configuration preceding the eruption for the past 2 days, which indicates that there is a case in which it is difficult to predict the eruption only by tracking the extrapolated global magnetic fields. In terms of space weather prediction, our result on the turbulent motions in a filament could be used as the useful precursor of a filament eruption.
The second Hi-C flight (Hi-C2.1) provided unprecedentedly-high spatial and temporal resolution ($sim$250km, 4.4s) coronal EUV images of Fe IX/X emission at 172 AA, of AR 12712 on 29-May-2018, during 18:56:21-19:01:56 UT. Three morphologically-differe nt types (I: dot-like, II: loop-like, III: surge/jet-like) of fine-scale sudden-brightening events (tiny microflares) are seen within and at the ends of an arch filament system in the core of the AR. Although type Is (not reported before) resemble IRIS-bombs (in size, and brightness wrt surroundings), our dot-like events are apparently much hotter, and shorter in span (70s). We complement the 5-minute-duration Hi-C2.1 data with SDO/HMI magnetograms, SDO/AIA EUV images, and IRIS UV spectra and slit-jaw images to examine, at the sites of these events, brightenings and flows in the transition-region and corona and evolution of magnetic flux in the photosphere. Most, if not all, of the events are seated at sites of opposite-polarity magnetic flux convergence (sometimes driven by adjacent flux emergence), implying likely flux cancellation at the microflares polarity inversion line. In the IRIS spectra and images, we find confirming evidence of field-aligned outflow from brightenings at the ends of loops of the arch filament system. In types I and II the explosion is confined, while in type III the explosion is ejective and drives jet-like outflow. The light-curves from Hi-C, AIA and IRIS peak nearly simultaneously for many of these events and none of the events display a systematic cooling sequence as seen in typical coronal flares, suggesting that these tiny brightening-events have chromospheric/transition-region origin.
We present a study on the evolution of the small scale velocity field in a solar filament as it approaches to the eruption. The observation was carried out by the Solar Dynamics Doppler Imager (SDDI) that was newly installed on the Solar Magnetic Act ivity Research Telescope (SMART) at Hida Observatory. The SDDI obtains a narrow-band full disk image of the sun at 73 channels from H$alpha$ - 9.0 AA to H$alpha$ + 9.0 AA, allowing us to study the line-of-sight (LOS) velocity of the filament before and during the eruption. The observed filament is a quiescent filament that erupted on 2016 November 5. We derived the LOS velocity at each pixel in the filament using the Beckers cloud model, and made the histograms of the LOS velocity at each time. The standard deviation of the LOS velocity distribution can be regarded as a measure for the amplitude of the small scale motion in the filament. We found that the standard deviation on the previous day of the eruption was mostly constant around 2-3 km s$^{-1}$, and it slightly increased to 3-4 km s$^{-1}$ on the day of the eruption. It shows further increase with a rate of 1.1 m s$^{-2}$ about three hours before eruption and again with a rate of 2.8 m s$^{-2}$ about an hour before eruption. From this result we suggest the increase in the amplitude of the small scale motions in a filament can be regarded as a precursor of the eruption.
82 - C. Kuckein 2013
Several scenarios explaining how filaments are formed can be found in literature. In this paper, we analyzed the observations of an active region filament and critically evaluated the observed properties in the context of current filament formation m odels. This study is based on multi-height spectropolarimetric observations. The inferred vector magnetic field has been extrapolated starting either from the photosphere or from the chromosphere. The line-of-sight motions of the filament, which was located near disk center, have been analyzed inferring the Doppler velocities. We conclude that a part of the magnetic structure emerged from below the photosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا