ترغب بنشر مسار تعليمي؟ اضغط هنا

Visual Reaction: Learning to Play Catch with Your Drone

57   0   0.0 ( 0 )
 نشر من قبل Kuo-Hao Zeng
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we address the problem of visual reaction: the task of interacting with dynamic environments where the changes in the environment are not necessarily caused by the agent itself. Visual reaction entails predicting the future changes in a visual environment and planning accordingly. We study the problem of visual reaction in the context of playing catch with a drone in visually rich synthetic environments. This is a challenging problem since the agent is required to learn (1) how objects with different physical properties and shapes move, (2) what sequence of actions should be taken according to the prediction, (3) how to adjust the actions based on the visual feedback from the dynamic environment (e.g., when objects bouncing off a wall), and (4) how to reason and act with an unexpected state change in a timely manner. We propose a new dataset for this task, which includes 30K throws of 20 types of objects in different directions with different forces. Our results show that our model that integrates a forecaster with a planner outperforms a set of strong baselines that are based on tracking as well as pure model-based and model-free RL baselines. The code and dataset are available at github.com/KuoHaoZeng/Visual_Reaction.



قيم البحث

اقرأ أيضاً

104 - Yilin Liu , Ke Xie , 2021
The drone navigation requires the comprehensive understanding of both visual and geometric information in the 3D world. In this paper, we present a Visual-Geometric Fusion Network(VGF-Net), a deep network for the fusion analysis of visual/geometric d ata and the construction of 2.5D height maps for simultaneous drone navigation in novel environments. Given an initial rough height map and a sequence of RGB images, our VGF-Net extracts the visual information of the scene, along with a sparse set of 3D keypoints that capture the geometric relationship between objects in the scene. Driven by the data, VGF-Net adaptively fuses visual and geometric information, forming a unified Visual-Geometric Representation. This representation is fed to a new Directional Attention Model(DAM), which helps enhance the visual-geometric object relationship and propagates the informative data to dynamically refine the height map and the corresponding keypoints. An entire end-to-end information fusion and mapping system is formed, demonstrating remarkable robustness and high accuracy on the autonomous drone navigation across complex indoor and large-scale outdoor scenes. The dataset can be found in http://vcc.szu.edu.cn/research/2021/VGFNet.
Among several road hazards that are present in any paved way in the world, potholes are one of the most annoying and also involving higher maintenance costs. There exists an increasing interest on the automated detection of these hazards enabled by t echnological and research progress. Our research work tackled the challenge of pothole detection from images of real world road scenes. The main novelty resides on the application of the latest progress in AI to learn the visual appearance of potholes. We built a large dataset of images with pothole annotations. They contained road scenes from different cities in the world, taken with different cameras, vehicles and viewpoints under varied environmental conditions. Then, we fine-tuned four different object detection models based on Faster R-CNN and SSD deep neural networks. We achieved high average precision and the pothole detector was tested on the Nvidia DrivePX2 platform with GPGPU capability, which can be embedded on vehicles. Moreover, it was deployed on a real vehicle to notify the detected potholes to a given IoT platform as part of AUTOPILOT H2020 project.
In the first week of May, 2021, researchers from four different institutions: Google, Tsinghua University, Oxford University and Facebook, shared their latest work [16, 7, 12, 17] on arXiv.org almost at the same time, each proposing new learning arch itectures, consisting mainly of linear layers, claiming them to be comparable, or even superior to convolutional-based models. This sparked immediate discussion and debate in both academic and industrial communities as to whether MLPs are sufficient, many thinking that learning architectures are returning to MLPs. Is this true? In this perspective, we give a brief history of learning architectures, including multilayer perceptrons (MLPs), convolutional neural networks (CNNs) and transformers. We then examine what the four newly proposed architectures have in common. Finally, we give our views on challenges and directions for new learning architectures, hoping to inspire future research.
Learning effective representations of visual data that generalize to a variety of downstream tasks has been a long quest for computer vision. Most representation learning approaches rely solely on visual data such as images or videos. In this paper, we explore a novel approach, where we use human interaction and attention cues to investigate whether we can learn better representations compared to visual-only representations. For this study, we collect a dataset of human interactions capturing body part movements and gaze in their daily lives. Our experiments show that our muscly-supervised representation that encodes interaction and attention cues outperforms a visual-only state-of-the-art method MoCo (He et al.,2020), on a variety of target tasks: scene classification (semantic), action recognition (temporal), depth estimation (geometric), dynamics prediction (physics) and walkable surface estimation (affordance). Our code and dataset are available at: https://github.com/ehsanik/muscleTorch.
135 - Feilong Chen , Xiuyi Chen , Can Xu 2021
Visual dialog is challenging since it needs to answer a series of coherent questions based on understanding the visual environment. How to ground related visual objects is one of the key problems. Previous studies utilize the question and history to attend to the image and achieve satisfactory performance, however these methods are not sufficient to locate related visual objects without any guidance. The inappropriate grounding of visual objects prohibits the performance of visual dialog models. In this paper, we propose a novel approach to Learn to Ground visual objects for visual dialog, which employs a novel visual objects grounding mechanism where both prior and posterior distributions over visual objects are used to facilitate visual objects grounding. Specifically, a posterior distribution over visual objects is inferred from both context (history and questions) and answers, and it ensures the appropriate grounding of visual objects during the training process. Meanwhile, a prior distribution, which is inferred from context only, is used to approximate the posterior distribution so that appropriate visual objects can be grounded even without answers during the inference process. Experimental results on the VisDial v0.9 and v1.0 datasets demonstrate that our approach improves the previous strong models in both generative and discriminative settings by a significant margin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا