ﻻ يوجد ملخص باللغة العربية
Let $G = (V, E)$ be an $n$-vertex edge-colored graph. In 2013, H. Li proved that if every vertex $v in V$ is incident to at least $(n+1)/2$ distinctly colored edges, then $G$ admits a rainbow triangle. We establish a corresponding result for fixed even rainbow $ell$-cycles $C_{ell}$: if every vertex $v in V$ is incident to at least $(n+5)/3$ distinctly colored edges, where $n geq n_0(ell)$ is sufficiently large, then $G$ admits an even rainbow $ell$-cycle $C_{ell}$. This result is best possible whenever $ell otequiv 0$ (mod 3). Correspondingly, we also show that for a fixed (even or odd) integer $ell geq 4$, every large $n$-vertex oriented graph $vec{G} = (V, vec{E})$ with minimum outdegree at least $(n+1)/3$ admits a (consistently) directed $ell$-cycle $vec{C}_{ell}$. Our latter result relates to one of Kelly, Kuhn, and Osthus, who proved a similar statement for oriented graphs with large semi-degree. Our proofs are based on the stability method.
We prove that every family of (not necessarily distinct) odd cycles $O_1, dots, O_{2lceil n/2 rceil-1}$ in the complete graph $K_n$ on $n$ vertices has a rainbow odd cycle (that is, a set of edges from distinct $O_i$s, forming an odd cycle). As part
Let $G = (V, E)$ be an $n$-vertex edge-colored graph. In 2013, H. Li proved that if every vertex $v in V$ is incident to at least $(n+1)/2$ distinctly colored edges, then $G$ admits a rainbow triangle. We prove that the same hypothesis ensures a rain
Let $G$ be a graph of order $n$ with an edge-coloring $c$, and let $delta^c(G)$ denote the minimum color degree of $G$. A subgraph $F$ of $G$ is called rainbow if all edges of $F$ have pairwise distinct colors. There have been a lot results on rainbo
For a finite subset $A$ of $mathbb{Z}_{>0}$, Lazar and Wachs (2019) conjectured that the number of cycles on $A$ with only even-odd drops is equal to the number of D-cycles on $A$. In this note, we introduce cycles on a multiset with only even-odd dr
Let $G$ be a simple $n$-vertex graph and $c$ be a colouring of $E(G)$ with $n$ colours, where each colour class has size at least $2$. We prove that $(G,c)$ contains a rainbow cycle of length at most $lceil frac{n}{2} rceil$, which is best possible.