ترغب بنشر مسار تعليمي؟ اضغط هنا

CaPtAs: a new noncentrosymmetric superconductor

235   0   0.0 ( 0 )
 نشر من قبل Michael Smidman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a new noncentrosymmetric superconductor CaPtAs. It crystallizes in a tetragonal structure (space group $I4_1md$, No.109), featuring three dimensional honeycomb networks of Pt-As and a much elongated $c$-axis ($a = b = 4.18 $ AA, and $c = 43.70 $ AA). The superconductivity of CaPtAs with $T_c$ = 1.47 K was characterized by means of electrical resistivity, specific heat, and ac magnetic susceptibility. The electronic specific heat $C_mathrm{e}(T)/T$ shows evidence for a deviation from the behavior of a conventional BCS superconductor, and can be reasonably fitted by a $p$-wave model. The upper critical field $mu_0H_{c2}$ of CaPtAs exhibits a relatively large anisotropy, with an in-plane value of around 204 mT and an out-of-plane value of 148 mT. Density functional theory calculations indicate that the Pt-5$d$ and As-4$p$ orbitals mainly contribute to the density of states near the Fermi level, showing that the Pt-As honeycomb networks may significantly influence the superconducting properties.



قيم البحث

اقرأ أيضاً

102 - T. Shang , M. Smidman , A. Wang 2020
By employing a series of experimental techniques, we provide clear evidence that CaPtAs represents a rare example of a noncentrosymmetric superconductor which simultaneously exhibits nodes in the superconducting gap and broken time-reversal symmetry (TRS) in its superconducting state (below $T_c$ $approx$ 1.5 K). Unlike in fully-gapped superconductors, the magnetic penetration depth $lambda(T)$ does not saturate at low temperatures, but instead it shows a $T^2$-dependence, characteristic of gap nodes. Both the superfluid density and the electronic specific heat are best described by a two-gap model comprising of a nodeless gap and a gap with nodes, rather than by single-band models. At the same time, zero-field muon-spin spectra exhibit increased relaxation rates below the onset of superconductivity, implying that TRS is broken in the superconducting state of CaPtAs, hence indicating its unconventional nature. Our observations suggest CaPtAs to be a new remarkable material which links two apparently disparate classes, that of TRS-breaking correlated magnetic superconductors with nodal gaps and the weakly-correlated noncentrosymmetric superconductors with broken TRS, normally exhibiting only a fully-gapped behavior.
For a noncentrosymmetric superconductor such as CePt3Si, we consider a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components. We demonstrate that such a model on a qualitative level a ccounts for experimentally observed features of the temperature dependence of the nuclear spin-lattice relaxation rate 1/T1, namely a peak just below Tc and a line-node gap behavior at low temperatures.
We numerically study the vortex core structure in a noncentrosymmetric superconductor such as CePt3Si without mirror symmetry about the xy plane. A single vortex along the z axis and a mixed singlet-triplet Cooper pairing model are considered. Th e spatial profiles of the pair potential, local density of states, supercurrent density, and radially-textured magnetic moment density around the vortex are obtained in the clean limit on the basis of the quasiclassical theory of superconductivity.
We numerically study the spatially-resolved NMR around a single vortex in a noncentrosymmetric superconductor such as CePt3Si. The nuclear spin-lattice relaxation rate 1/T1 under the influence of the vortex core states is calculated for an s+p-wave Cooper pairing state. The result is compared with that for an s-wave pairing state.
The results of heat capacity C_p(T, H) and electrical resistivity rho(T,H) measurements down to 0.35 K as well as muon spin relaxation and rotation (muSR) measurements on a noncentrosymmetric superconductor LaIrSi3 are presented. Powder neutron diffr action confirmed the reported noncentrosymmetric body-centered tetragonal BaNiSn3-type structure (space group I4,mm) of LaIrSi3. The bulk superconductivity is observed below T_c = 0.72(1) K. The intrinsic Delta C_e/gamma_n T_c = 1.09(3) is significantly smaller than the BCS value of 1.43, and this reduction is accounted by the alpha-model of BCS superconductivity. The analysis of the superconducting state C_e(T) data by the single-band alpha-model indicates a moderately anisotropic order parameter with the s-wave gap Delta(0)/k_B T_c = 1.54(2) which is lower than the BCS value of 1.764. Our estimates of various normal and superconducting state parameters indicate a weakly coupled electron-phonon driven type-I s-wave superconductivity in LaIrSi3. The muSR results also confirm the conventional type-I superconductivity in LaIrSi3 with a preserved time reversal symmetry and hence a singlet pairing superconducting ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا