ﻻ يوجد ملخص باللغة العربية
We introduce and study the following model for random resonances: we take a collection of point interactions $Upsilon_j$ generated by a simple finite point process in the 3-D space and consider the resonances of associated random Schrodinger Hamiltonians $H_Upsilon = -Delta + ``sum mathfrak{m}(alpha) delta (x - Upsilon_j)``$. These resonances are zeroes of a random exponential polynomial, and so form a point process $Sigma (H_Upsilon)$ in the complex plane $mathbb{C}$. We show that the counting function for the set of random resonances $Sigma (H_Upsilon)$ in $mathbb{C}$-discs with growing radii possesses Weyl-type asymptotics almost surely for a uniform binomial process $Upsilon$, and obtain an explicit formula for the limiting distribution as $m to infty$ of the leading parameter of the asymptotic chain of `most narrow resonances generated by a sequence of uniform binomial processes $Upsilon^m$ with $m$ points. We also pose a general question about the limiting behavior of the point process formed by leading parameters of asymptotic sequences of resonances. Our study leads to questions about metric characteristics for the combinatorial geometry of $m$ samples of a random point in the 3-D space and related statistics of extreme values.
Random plane wave is conjectured to be a universal model for high-energy eigenfunctions of the Laplace operator on generic compact Riemanian manifolds. This is known to be true on average. In the present paper we discuss one of important geometric ob
We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramer- and Sa
Motivated by the long-time transport properties of quantum waves in weakly disordered media, the present work puts random Schrodinger operators into a new spectral perspective. Based on a stationary random version of a Floquet type fibration, we redu
For each of the $8$ isotropy classes of elastic materials, we consider a homogeneous random field taking values in the fixed point set $mathsf{V}$ of the corresponding class, that is isotropic with respect to the natural orthogonal representation of
This is an elementary review, aimed at non-specialists, of results that have been obtained for the limiting distribution of eigenvalues and for the operator norms of real symmetric random matrices via the method of moments. This method goes back to a