ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational Waves in Scalar-Tensor-Vector Gravity Theory

138   0   0.0 ( 0 )
 نشر من قبل Wei-Liang Qian
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the properties of gravitational waves in the scalar-tensor-vector gravity theory. The polarizations of the gravitational waves are investigated by analyzing the relative motion of the test particles. It is found that the interaction between the matter and vector field in the theory leads to two additional transverse polarization modes. By making use of the polarization content, the stress-energy pseudo-tensor is calculated by employing the perturbed equation method. Besides, the relaxed field equation for the modified gravity in question is derived by using the Landau-Lifshitz formalism suitable to systems with non-negligible self-gravity.


قيم البحث

اقرأ أيضاً

The speed of gravitational waves provides us a new tool to test alternative theories of gravity. The constraint on the speed of gravitational waves from GW170817 and GRB170817A is used to test some classes of Horndeski theory. In particular, we consi der the coupling of a scalar field to Einstein tensor and the coupling of the Gauss-Bonnet term to a scalar field. The coupling strength of the Gauss-Bonnet coupling is constrained to be in the order of $10^{-15}$. In the Horndeski theory we show that in order for this theory to satisfy the stringent constraint on the speed of GWs the mass scale $M$ introduced in the non-minimally derivative coupling is constrained to be in the range $10^{15}text{GeV}gg M gtrsim 2times 10^{-35}$GeV taking also under consideration the early times upper bound for the mass scale $M$. The large mass ranges require no fine-tuning because the effect of non-minimally derivative coupling is negligible at late times.
110 - Yungui Gong , Shaoqi Hou 2017
The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in $f(R)$ grav ity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar $+$ and $times$ polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.
192 - Dario Bettoni 2016
The direct detection of gravitational waves (GWs) is an invaluable new tool to probe gravity and the nature of cosmic acceleration. A large class of scalar-tensor theories predict that GWs propagate with velocity different than the speed of light, a difference that can be $mathcal{O}(1)$ for many models of dark energy. We determine the conditions behind the anomalous GW speed, namely that the scalar field spontaneously breaks Lorentz invariance and couples to the metric perturbations via the Weyl tensor. If these conditions are realized in nature, the delay between GW and electromagnetic (EM) signals from distant events will run beyond human timescales, making it impossible to measure the speed of GWs using neutron star mergers or other violent events. We present a robust strategy to exclude or confirm an anomalous speed of GWs using eclipsing binary systems, whose EM phase can be exquisitely determined. he white dwarf binary J0651+2844 is a known example of such system that can be used to probe deviations in the GW speed as small as $c_g/c-1gtrsim 2cdot 10^{-12}$ when LISA comes online. This test will either eliminate many contender models for cosmic acceleration or wreck a fundamental pillar of general relativity.
111 - Qasem Exirifard 2011
We study the gravitomagnetism in the TeVeS theory. We compute the gravitomagnetic field that a slow-moving mass distribution produces in its Newtonian regime. We report that the consistency between the TeVeS gravitomagnetic field and that predicted b y the Einstein-Hilbert theory leads to a relation between the vector and scalar coupling constants of the theory. We observe that requiring consistency between the near horizon geometry of a black hole in TeVeS and the image of the black hole taken Event Horizon Telescope leads to another relation between the coupling constants of the TeVeS theory and enable us to identify the coupling constants of the theory.
A gravity theory called scalar-tensor-vector gravity (STVG) has been recently developed and succeeded in solar system, astrophysical and cosmological scales without dark matter [J. W. Moffat, J. Cosmol. Astropart. Phys. 03, 004 (2006)]. However, two assumptions have been used: (i) $B(r)=A^{-1}(r)$, where $B(r)$ and $A(r)$ are $g_{00}$ and $g_{rr}$ in the Schwarzschild coordinates (static and spherically symmetric); (ii) scalar field $G=Const.$ in the solar system. These two assumptions actually imply that the standard parametrized post-Newtonian parameter $gamma=1$. In this paper, we relax these two assumptions and study STVG further by using the post-Newtonian (PN) approximation approach. With abandoning the assumptions, we find $gamma eq1$ in general cases of STVG. Then, a version of modified STVG (MSTVG) is proposed through introducing a coupling function of scalar field G: $theta(G)$. We have derived the metric and equations of motion (EOM) in 1PN for general matter without specific equation of state and $N$ point masses firstly. Subsequently, the secular periastron precession $dot{omega}$ of binary pulsars in harmonic coordinates is given. After discussing two PPN parameters ($gamma$ and $beta$) and two Yukawa parameters ($alpha$ and $lambda$), we use $dot{omega}$ of four binary pulsars data (PSR B1913+16, PSR B1534+12, PSR J0737-3039 and PSR B2127+11C) to constrain the Yukawa parameters for MSTVG: $lambda=(3.97pm0.01)times10^{8}$m and $alpha=(2.40pm0.02)times10^{-8}$ if we fix $|2gamma-beta-1|=0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا