ﻻ يوجد ملخص باللغة العربية
We present detailed calculations about the expected shape of two-pion Bose-Einstein (or HBT) correlations in high energy heavy ion collisions that include a realistic treatment of final state Coulomb interaction as well as strong interactions (dominated by s-wave scattering). We assume Levy type source functions, a generalization that goes beyond the Gaussian approximation. Various recent experimental results found the use of such source types necessary to properly describe the shape of the measured correlation functions. We find that strong final state interactions may play an important role in the shape of the two-pion correlation functions, especially if one considers source parameters beyond the Gaussian HBT radii. Precise experimental determination of these source parameters (such as Levy stability exponent, correlation strength, etc.) seems to require the inclusion of the treatment of strong interaction not just for heavier particles (e.g. protons, lambdas) but also in case of two-pion measurements.
We present an analytical formula for the Bose-Einstein correlations (BEC) which includes effects of both Coulomb and strong final stateinteractions (FSI). It was obtained by using Coulomb wave function together with the scattering partial wave amplit
We are presenting here the new formulae for Bose-Einstein correlations (BEC) which contain effects of final state interactions (FSI) of both strong (in $s$-wave) and electromagnetic origin. We demonstrate the importance of FSI in BEC by analysing dat
Investigation of momentum space correlations of particles produced in high energy reactions requires taking final state interactions into account, a crucial point of any such analysis. Coulomb interaction between charged particles is the most importa
In the study of neutrino and antineutrino interactions in the GeV regime, kinematic imbalances of the final-state particles have sensitivities to different nuclear effects. Previous ideas based on neutrino quasielastic interactions [Phys. Rev. C94, 0
Recently DELPHI Collaboration reported new data on Bose-Einstein correlations (BEC) measured in e+e- -> W^+W^- events. Apparently no enhancement has been observed. We have analyzed these data including final state interactions (FSI) of both Coulomb a