ﻻ يوجد ملخص باللغة العربية
By analysing the data acquired from the Parkes 64-m radio telescope at 1369 MHz, we report on the phase-stationary non-drift amplitude modulation observed in PSR J1048-5832. The high-sensitivity observations revealed that the central and trailing components of the pulse profile of this pulsar switch between a strong mode and a weak mode periodically. However, the leading component remains unchanged. Polarization properties of the strong and weak modes are investigated. Considering the similarity to mode changing, we argue that the periodic amplitude modulation in PSR J1048$-$5832 is periodic mode changing. The fluctuation spectral analysis showed that the modulation period is very short (~2.1 s or 17 P1), where P1 is the rotation period of the pulsar. We find that this periodic amplitude modulation is hard to explain by existing models that account for the periodic phenomena in pulsars like subpulse drifting.
PSR J1048-5832 is a Vela-like (P=123.6 ms; tau~20.3 kyr) gamma-ray pulsar detected by Fermi, at a distance of ~2.7 kpc and with a rotational energy loss rate dot{E}_{SD} ~2 x 10^{36} erg/s. The PSR J1048-5832 field has been observed with the VLT in t
PSR J1825$-$0935 (PSR B1822$-$09) switches between radio-quiet (Q-mode) and radio-bright (B-mode) modes. The Q-mode is known to have a periodic fluctuation that modulates both the interpulse and the main pulse with the same period. Earlier investigat
We report a detailed observational study of the single pulses from the pulsar J1822$-$2256. The pulsar shows the presence of subpulse drifting, nulling as well as multiple emission modes. During these observations the pulsar existed primarily in two
We report a detailed analysis of the emission behaviour of the five component, core-double cone, pulsar J2006$-$0807 (B2003$-$08). The single pulses revealed the presence of the three major phenomena of subpulse drifting, nulling and mode changing. T
In this study, we report on a detailed single pulse polarimetric analysis of the radio emission from the pulsar J2321+6024 (B2319+60) observed with the Giant Metrewave Radio Telescope, over wide frequencies ranging between 300 to 500 MHz and widely s