ترغب بنشر مسار تعليمي؟ اضغط هنا

$sqrt{2}$$times$$sqrt{2}R45^circ$ surface reconstruction and electronic structure of BaSnO$_3$ film

85   0   0.0 ( 0 )
 نشر من قبل Shoresh Soltani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied surface and electronic structures of barium stannate (BaSnO$_3$) thin-film by low energy electron diffraction (LEED), and angle-resolved photoemission spectroscopy (ARPES) techniques. BaSnO$_3$/Ba$_{0.96}$La$_{0.04}$SnO$_3$/SrTiO$_3$ (10 nm/100 nm/0.5 mm) samples were grown using pulsed-laser deposition (PLD) method and were emph{ex-situ} transferred from PLD chamber to ultra-high vacuum (UHV) chambers for annealing, LEED and ARPES studies. UHV annealing starting from 300$^{circ}$C up to 550$^{circ}$C, followed by LEED and ARPES measurements show 1$times$1 surfaces with non-dispersive energy-momentum bands. The 1$times$1 surface reconstructs into a $sqrt{2}$$times$$sqrt{2}R45^circ$ one at the annealing temperature of 700$^{circ}$C where the ARPES data shows clear dispersive bands with valence band maximum located around 3.3 eV below Fermi level. While the $sqrt{2}$$times$$sqrt{2}R45^circ$ surface reconstruction is stable under further UHV annealing, it is reversed to 1$times$1 surface by annealing the sample in 400 mTorr oxygen at 600$^{circ}$C. Another UHV annealing at 600$^{circ}$C followed by LEED and ARPES measurements, suggests that LEED $sqrt{2}$$times$$sqrt{2}R45^circ$ surface reconstruction and ARPES dispersive bands are reproduced. Our results provide a better picture of electronic structure of BaSnO$_3$ surface and are suggestive of role of oxygen vacancies in the reversible $sqrt{2}$$times$$sqrt{2}R45^circ$ surface reconstruction.

قيم البحث

اقرأ أيضاً

249 - M. Maniraj , D. Jungkenn , W. Shi 2019
We have investigated the atomic and electronic structure of the ($sqrt{3}times sqrt{3}$)$R30^{circ}$ SnAu$_2$/Au(111) surface alloy. Low energy electron diffraction and scanning tunneling microscopy measurements show that the native herringbone recon struction of bare Au(111) surface remains intact after formation of a long range ordered ($sqrt{3}times sqrt{3}$)$R30^{circ}$ SnAu$_2$2/Au(111) surface alloy. Angle-resolved photoemission and two-photon photoemission spectroscopy techniques reveal Rashba-type spin-split bands in the occupied valence band with comparable momentum space splitting as observed for the Au(111) surface state, but with a hole-like parabolic dispersion. Our experimental findings are compared with density functional theory (DFT) calculation that fully support our experimental findings. Taking advantage of the good agreement between our DFT calculations and the experimental results, we are able to extract that the occupied Sn-Au hybrid band is of (s, d)-orbital character while the unoccupied Sn-Au hybrid bands are of (p, d)-orbital character. Hence, we can conclude that the Rashba-type spin splitting of the hole-like Sn-Au hybrid surface state is caused by the significant mixing of Au d- to Sn s-states in conjunction with the strong atomic spin-orbit coupling of Au, i.e., of the substrate.
The structure of the $(sqrt{5}timessqrt{5})R26.6^circ$ reconstruction of LaAlO$_3$ (001) has been determined using transmission electron diffraction combined with direct methods. The structure is relatively simple, consisting of a lanthanum oxide ter mination with one lanthanum cation vacancy per surface unit cell. The electronic structure is unusual since a fractional number of holes or atomic occupancies per surface unit cell are required to achieve charge neutrality. Density functional calculations indicate that the charge compensation mechanism occurs by means of highly delocalized holes. The surface contains no oxygen vacancies and with a better than 99% confidence level, the holes are not filled with hydrogen. The reconstruction can be understood in terms of expulsion of the more electropositive cation from the surface followed by an increased covalency between the remaining surface lanthanum atoms and adjacent oxygen atoms.
Low dimensional structures comprised of ferroelectric (FE) PbTiO$_3$ (PTO) and quantum paraelectric SrTiO$_3$ (STO) are hosts to complex polarization textures such as polar waves, flux-closure domains and polar skyrmion phases. Density functional the ory (DFT) simulations can provide insight into this order, but, are limited by the computational effort needed to simulate the thousands of required atoms. To relieve this issue, we use the novel multi-site support function (MSSF) method within DFT to reduce the solution time for the electronic groundstate whilst preserving high accuracy. Using MSSFs, we simulate thin PTO films on STO substrates with system sizes $>2000$ atoms. In the ultrathin limit, the polar wave texture with cylindrical chiral bubbles emerges as an intermediate phase between full flux closure domains and in-plane polarization. This is driven by an internal bias field born of the compositionally broken inversion symmetry in the [001] direction. Since the exact nature of this bias field depends sensitively on the film boundary conditions, this informs a new principle of design for manipulating chiral order on the nanoscale through the careful choice of substrate, surface termination or use of overlayers. Antiferrodistortive (AFD) order locally interacts with these polar textures giving rise to strong FE/AFD coupling at the PbO terminated surface driving a $p(2 times Lambda)$ surface reconstruction. This offers another pathway for the local control of ferroelectricity.
98 - C. Ch`eze 2017
We explore an alternative way to fabricate (In,Ga)N/GaN short-period superlattices on GaN(0001) by plasma-assisted molecular beam epitaxy. We exploit the existence of an In adsorbate structure manifesting itself by a $(sqrt{3}times!sqrt{3})text{R}30^ {circ}$ surface reconstruction observed in-situ by reflection high-energy electron diffraction. This In adlayer accommodates a maximum of 1/3 monolayer of In on the GaN surface and, under suitable conditions, can be embedded into GaN to form an In$_{0.33}$Ga$_{0.67}$N quantum sheet whose width is naturally limited to a single monolayer. Periodically inserting these quantum sheets, we synthesize (In,Ga)N/GaN short-period superlattices with abrupt interfaces and high periodicity as demonstrated by x-ray diffractometry and scanning transmission electron microscopy. The embedded quantum sheets are found to consist of single monolayers with an In content of 0.25-0.29. For a barrier thickness of 6 monolayers, the superlattice gives rise to a photoluminescence band at 3.16 eV, close to the theoretically predicted values for these structures.
89 - A.A. Aligia CAB 1997
We have compared the ground-state energy of several observed or proposed 2 sqrt{2} x 2 sqrt{2} oxygen (O) ordered superstructures (from now on HS), with those of chain superstructures (CS) (in which the O atoms of the basal plane are ordered in cha ins), for different compositions x in YBa2Cu3O6+x. The model Hamiltonian contains i) the Madelung energy, ii) a term linear in the difference between Cu and O hole occupancies which controls charge transfer, and iii) covalency effects based on known results for $t-J$ models in one and two dimensions. The optimum distribution of charge is determined minimizing the total energy, and depends on two parameters which are determined from known results for x=1 and x=0.5. We obtain that on the O lean side, only CS are stable, while for x=7/8, a HS with regularly spaced O vacancies added to the x=1 structure is more stable than the corresponding CS for the same x. We find that the detailed positions of the atoms in the structure, and long-range Coulomb interactions, are crucial for the electronic structure, the mechanism of charge transfer, the stability of the different phases, and the possibility of phase separation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا