ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent satellites in multi-spectral regenerative frequency microcombs

70   0   0.0 ( 0 )
 نشر من قبل Jinghui Yang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-spectral frequency combs provide frontier architectures for laser standoff spectroscopy, optical clockwork, and high-capacity optical communications. Frequency microcombs, aided by their high-quality resonances and inherent third-order nonlinear susceptibility, have demonstrated remarkable impact in frequency metrology and synthesis. However, microcombs are often with limited spectral bandwidth bounded by the intrinsic second-order chromatic dispersion and the consequently low intensities at the spectral edges. To enhance the applications of frequency combs, a spectrally-broad comb generation scheme is often desired. Here we report coherent satellite clusters in multi-spectral regenerative frequency microcombs with enhanced intensities at the octave points and engineered frequency span. Beyond the conventional bandwidth of parametric oscillation, the regenerative satellites are facilitated by higher-order dispersion control allowing for multi-phase-matching in the microcavities. The frequency span of the multi-spectral regenerative satellites is deterministically controlled from 57 THz to 126 THz by pumping at C- and L- bands. We demonstrate that the regenerative satellite preserves the coherence with the central comb through the nonlinear parametric process. We further show the mirrored appearance of the satellite transition dynamics including each comb state that are simultaneously observed at the central comb. These multi-spectral regenerative satellites extend the scope of parametric-based frequency combs and provide a unique platform with wide applications.



قيم البحث

اقرأ أيضاً

Long-range spatial coherence can be induced in thermal emitters by embedding a periodic grating into a material supporting propagating polaritons or dielectric modes. However, the emission angle and frequency cannot be defined simultaneously and uniq uely, resulting in emission at unusable angles or frequencies. Here, we explore superstructure gratings (SSGs) to control the spatial and spectral properties of thermal emitters. SSGs have long-range periodicity, but a unit cell that provides tailorable Bragg components to interact with light. These Bragg components allow simultaneous launching of polaritons with different frequencies/wavevectors in a single grating, manifesting as additional spatial and spectral bands upon the emission profile. As the unit cell period approaches the spatial coherence length, the coherence properties of the superstructure will be lost. Whilst the 1D k-space representation of the grating provides insights into the emission, the etch depth of the grating can result in strong polariton-polariton interactions. An emergent effect of these interactions is the creation of polaritonic band gaps, and defect states that can have a well-defined frequency and emission angle. In all, our results show experimentally how even in simple 1D gratings there is significant design flexibility for engineering the profile of thermal emitters, bound by finite coherence length.
We cast a theoretical model based on Effective Semiconductor Maxwell-Bloch Equations and study the dynamics of a multi-mode mid-Infrared Quantum Cascade Laser in Fabry Perot with the aim to investigate the spontaneous generation of optical frequency combs. This model encompasses the key features of a semiconductor active medium such as asymmetric,frequency-dependent gain and refractive index as well as the phase-amplitude coupling of the field dynamics provided by the linewidth enhancement factor. Our numerical simulations are in excellent agreement with recent experimental results, showing broad ranges of comb formationin locked regimes, separated by chaotic dynamics when the field modes unlock. In the former case, we identify self-confined structures travelling along the cavity, while the instantaneous frequency is characterized by a linear chirp behaviour. In such regimes we show that OFC are characterized by concomitant and relevant amplitude and frequency modulation.
We report temporal and spectral domain observation of regenerative oscillation in monolithic silicon heterostructured photonic crystals cavities with high quality factor to mode volume ratios (Q/V). The results are interpreted by nonlinear coupled mo de theory (CMT) tracking the dynamics of photon, free carrier population and temperature variations. We experimentally demonstrate effective tuning of the radio frequency (RF) tones by laser-cavity detuning and laser power levels, confirmed by the CMT simulations with sensitive input parameters.
Laser frequency microcombs provide equidistant coherent frequency markers over a broad spectrum, enabling new frontiers in chip-scale frequency metrology, laser spectroscopy, dense optical communications, precision distance metrology and astronomy. H ere we demonstrate thermally stabilized frequency microcomb formation in dispersion-managed microresonators at the different mode-locking states featured with the negligible center frequency shift and broad frequency bandwidth. Subsequently, femtosecond timing jitter in the microcombs are characterized, supported by precision metrology on the timing phase, relative intensity noise and instantaneous linewidth. We contrast the fundamental noise for a range of 89 GHz microcomb states, from soliton crystals to multiple solitons and single-soliton regimes, determined by pump-resonance detuning. For the single-soliton state, we report a close-to-shot-noise-limited relative intensity noise of -153.2 dB/Hz and a quantum-noise-limited timing jitter power spectral density of 0.4 as2/Hz, at 100 kHz offset frequency. This is enabled by a self-heterodyne linear interferometer with 94.2 zs/Hz1/2 timing resolution, 50.6 mHz/Hz1/2 RF frequency resolution, and 6.7 uV/Hz frequency discrimination sensitivity. We achieve an integrated timing jitter at 1.7 fs, integrated from 10 kHz to 1 MHz. Measuring and understanding the fundamental noise parameters in these high-clock-rate frequency microcombs are essential to advance soliton physics and precision microwave-optical clockwork.
Optical frequency combs based on mode-locked lasers have proven to be invaluable tools for a wide range of applications in precision spectroscopy and metrology. A novel principle of optical frequency comb generation in whispering-gallery mode microre sonators (microcombs) has been developed recently, which represents a promising route towards chip-level integration and out-of-the-lab use of these devices. Presently, two families of microcombs have been demonstrated: combs with electronically detectable mode spacing that can be directly stabilized, and broadband combs with up to octave-spanning spectra but mode spacings beyond electronic detection limits. However, it has not yet been possible to achieve these two key requirements simultaneously, as will be critical for most microcomb applications. Here we present a key step to overcome this problem by interleaving an electro-optic comb with the spectrum from a parametric microcomb. This allows, for the first time, direct control and stabilization of a microcomb spectrum with large mode spacing (>140 GHz) with no need for an additional mode-locked laser frequency comb. The attained residual 1-second-instability of the microcomb comb spacing is 10^-15, with a microwave reference limited absolute instability of 10^-12 at a 140 GHz mode spacing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا