ﻻ يوجد ملخص باللغة العربية
The task of image captioning implicitly involves gender identification. However, due to the gender bias in data, gender identification by an image captioning model suffers. Also, the gender-activity bias, owing to the word-by-word prediction, influences other words in the caption prediction, resulting in the well-known problem of label bias. In this work, we investigate gender bias in the COCO captioning dataset and show that it engenders not only from the statistical distribution of genders with contexts but also from the flawed annotation by the human annotators. We look at the issues created by this bias in the trained models. We propose a technique to get rid of the bias by splitting the task into 2 subtasks: gender-neutral image captioning and gender classification. By this decoupling, the gender-context influence can be eradicated. We train the gender-neutral image captioning model, which gives comparable results to a gendered model even when evaluating against a dataset that possesses a similar bias as the training data. Interestingly, the predictions by this model on images with no humans, are also visibly different from the one trained on gendered captions. We train gender classifiers using the available bounding box and mask-based annotations for the person in the image. This allows us to get rid of the context and focus on the person to predict the gender. By substituting the genders into the gender-neutral captions, we get the final gendered predictions. Our predictions achieve similar performance to a model trained with gender, and at the same time are devoid of gender bias. Finally, our main result is that on an anti-stereotypical dataset, our model outperforms a popular image captioning model which is trained with gender.
Image captioning has made substantial progress with huge supporting image collections sourced from the web. However, recent studies have pointed out that captioning datasets, such as COCO, contain gender bias found in web corpora. As a result, learni
In this work, we present a framework to measure and mitigate intrinsic biases with respect to protected variables --such as gender-- in visual recognition tasks. We show that trained models significantly amplify the association of target labels with
Internet search affects peoples cognition of the world, so mitigating biases in search results and learning fair models is imperative for social good. We study a unique gender bias in image search in this work: the search images are often gender-imba
Many text corpora exhibit socially problematic biases, which can be propagated or amplified in the models trained on such data. For example, doctor cooccurs more frequently with male pronouns than female pronouns. In this study we (i) propose a metri
Image captioning is an important task for benchmarking visual reasoning and for enabling accessibility for people with vision impairments. However, as in many machine learning settings, social biases can influence image captioning in undesirable ways