ﻻ يوجد ملخص باللغة العربية
The determination of absolute branching ratios for high-energy states in light nuclei is an important and useful tool for probing the underlying nuclear structure of individual resonances: for example, in establishing the tendency of an excited state towards $alpha$-cluster structure. Difficulty arises in measuring these branching ratios due to similarities in available decay channels, such as ($mathbf{^{18}}$O,$mathbf{n}$) and ($mathbf{^{18}}$O,$mathbf{2n}$), as well as differences in geometric efficiencies due to population of bound excited levels in daughter nuclei. Methods are presented using Monte Carlo techniques to overcome these issues.
Photon branching ratios are critical input data for activities such as nuclear materials protection and accounting because they allow material compositions to be extracted from measurements of gamma-ray intensities. Uncertainties in these branching r
Beta-decay branching ratios of 62Ga have been measured at the IGISOL facility of the Accelerator Laboratory of the University of Jyvaskyla. 62Ga is one of the heavier Tz = 0, 0+ -> 0+ beta-emitting nuclides used to determine the vector coupling const
Based on measurements the branching ratios for the decay of the recently discovered dibaryon resonance $d^*(2380)$ into two-pion production channels and into the $np$ channel are evaluated. Possibilities for a decay into the isoscalar single-pion cha
We have measured the beta-decay branching ratio for the transition from 21Na to the first excited state of 21Ne. A recently published test of the standard model, which was based on a measurement of the beta-nu correlation in the decay of 21Na, depend
An experiment measuring electroproduction of hypernuclei has been performed in Hall A at Jefferson Lab on a $^{12}$C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a Ring