ﻻ يوجد ملخص باللغة العربية
In this paper, we study the three-dimensional (3D) path planning for a cellular-connected unmanned aerial vehicle (UAV) to minimize its flying distance from given initial to final locations, while ensuring a target link quality in terms of the expected signal-to-interference-plus-noise ratio (SINR) at the UAV receiver with each of its associated ground base stations (GBSs) during the flight. To exploit the location-dependent and spatially varying channel as well as interference over the 3D space, we propose a new radio map based path planning framework for the UAV. Specifically, we consider the channel gain map of each GBS that provides its large-scale channel gains with uniformly sampled locations on a 3D grid, which are due to static and large-size obstacles (e.g., buildings) and thus assumed to be time-invariant. Based on the channel gain maps of GBSs as well as their loading factors, we then construct an SINR map that depicts the expected SINR levels over the sampled 3D locations. By leveraging the obtained SINR map, we proceed to derive the optimal UAV path by solving an equivalent shortest path problem (SPP) in graph theory. We further propose a grid quantization approach where the grid points in the SINR map are more coarsely sampled by exploiting the spatial channel/interference correlation over neighboring grids. Then, we solve an approximate SPP over the reduced-size SINR map (graph) with reduced complexity. Numerical results show that the proposed solution can effectively minimize the flying distance/time of the UAV subject to its communication quality constraint, and a flexible trade-off between performance and complexity can be achieved by adjusting the grid quantization ratio in the SINR map. Moreover, the proposed solution significantly outperforms various benchmark schemes without fully exploiting the channel/interference spatial distribution in the network.
In this paper, we study the path planning for a cellular-connected unmanned aerial vehicle (UAV) to minimize its flying distance from given initial to final locations, while ensuring a target link quality in terms of the large-scale channel gain with
In cellular-connected unmanned aerial vehicle (UAV) network, a minimization problem on the weighted sum of time cost and expected outage duration is considered. Taking advantage of UAVs adjustable mobility, an intelligent UAV navigation approach is f
This paper studies the path design problem for cellular-connected unmanned aerial vehicle (UAV), which aims to minimize its mission completion time while maintaining good connectivity with the cellular network. We first argue that the conventional pa
In this paper, we study the trajectory design for a cellular-connected unmanned aerial vehicle (UAV) with given initial and final locations, while communicating with the ground base stations (GBSs) along its flight. We consider delay-limited communic
Enabling high-rate, low-latency and ultra-reliable wireless communications between unmanned aerial vehicles (UAVs) and their associated ground pilots/users is of paramount importance to realize their large-scale usage in the future. To achieve this g