ﻻ يوجد ملخص باللغة العربية
The goal of Sketch-Based Image Retrieval (SBIR) is using free-hand sketches to retrieve images of the same category from a natural image gallery. However, SBIR requires all test categories to be seen during training, which cannot be guaranteed in real-world applications. So we investigate more challenging Zero-Shot SBIR (ZS-SBIR), in which test categories do not appear in the training stage. After realizing that sketches mainly contain structure information while images contain additional appearance information, we attempt to achieve structure-aware retrieval via asymmetric disentanglement.For this purpose, we propose our STRucture-aware Asymmetric Disentanglement (STRAD) method, in which image features are disentangled into structure features and appearance features while sketch features are only projected to structure space. Through disentangling structure and appearance space, bi-directional domain translation is performed between the sketch domain and the image domain. Extensive experiments demonstrate that our STRAD method remarkably outperforms state-of-the-art methods on three large-scale benchmark datasets.
Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR) is a novel cross-modal retrieval task, where abstract sketches are used as queries to retrieve natural images under zero-shot scenario. Most existing methods regard ZS-SBIR as a traditional classificat
Zero-shot sketch-based image retrieval (ZS-SBIR) is a specific cross-modal retrieval task for searching natural images given free-hand sketches under the zero-shot scenario. Most existing methods solve this problem by simultaneously projecting visual
Current supervised sketch-based image retrieval (SBIR) methods achieve excellent performance. However, the cost of data collection and labeling imposes an intractable barrier to practical deployment of real applications. In this paper, we present the
This paper proposes a novel approach for Sketch-Based Image Retrieval (SBIR), for which the key is to bridge the gap between sketches and photos in terms of the data representation. Inspired by channel-wise attention explored in recent years, we pres
Sketch-based image retrieval (SBIR) is a cross-modal matching problem which is typically solved by learning a joint embedding space where the semantic content shared between photo and sketch modalities are preserved. However, a fundamental challenge