ترغب بنشر مسار تعليمي؟ اضغط هنا

Wormhole model with a hybrid shape function in f(R,T) gravity

73   0   0.0 ( 0 )
 نشر من قبل Pardyumn Kumar Sahoo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present article we propose a new hybrid shape function for wormhole (WH)s in the modified $f(R,T)$ gravity. The proposed shape function satisfied the conditions of WH geometry. Geometrical behavior of WH solutions are discussed in both anisotropic and isotropic cases respectively. Also, the stability of this model is obtained by determining the equilibrium condition. The radial null energy condition and weak energy condition are validated in the proposed shape function indicating the absence of exotic matter in modified $f(R,T)$ gravity.

قيم البحث

اقرأ أيضاً

A plane symmetric Bianchi-I model is explored in $f(R,T)$ gravity, where $R$ is the Ricci scalar and $T$ is the trace of energy-momentum tensor. The solutions are obtained with the consideration of a specific Hubble parameter which yields a constant deceleration parameter. The various evolutionary phases are identified under the constraints obtained for physically viable cosmological scenarios. Although a single (primary) matter source is taken, due to the coupling between matter and $f(R,T)$ gravity, an additional matter source appears, which mimics a perfect fluid or exotic matter. The solutions are also extended to the case of a scalar field model. The kinematical behavior of the model remains independent of $f(R,T)$ gravity. The physical behavior of the effective matter also remains the same as in general relativity. It is found that $f(R,T)$ gravity can be a good alternative to the hypothetical candidates of dark energy to describe the present accelerating expansion of the universe.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an d $eta$ the model parameter (constant). We first investigated an inflationary scenario where the inflation is driven purely due to geometric effects outside of GR. We found the inflation observables to be independent of the number of e-foldings in this setup. The computed value of the spectral index is consistent with latest Planck 2018 dataset while the scalar to tensor ratio is a bit higher. We then proceeded to analyze the behavior of an inflation driven by $f(R,T)$ gravity coupled with a real scalar field. By taking the slow-roll approximation, we generated interesting scenarios where a Klein Gordon potential leads to observationally consistent inflation observables. Our results makes it clear-cut that in addition to the Ricci scalar and scalar fields, the trace of energy momentum tensor also play a major role in driving inflationary scenarios.
In the present work, a new form of the logarithmic shape function is proposed for the linear $f(R,T)$ gravity, $f(R,T)=R+2lambda T$ where $lambda$ is an arbitrary coupling constant, in wormhole geometry. The desired logarithmic shape function accompl ishes all necessary conditions for traversable and asymptotically flat wormholes. The obtained wormhole solutions are analyzed from the energy conditions for different values of $lambda$. It has been observed that our proposed shape function for the linear form of $f(R,T)$ gravity, represents the existence of exotic matter and non-exotic matter. Moreover, for $lambda=0$ i.e. for the general relativity case, the existence of exotic matter for the wormhole geometry has been confirmed. Further, the behaviour of the radial state parameter $omega_{r}$, the tangential state parameter $omega_{t}$ and the anisotropy parameter $triangle$ describing the geometry of the universe, has been presented for different values of $lambda$ chosen in $[-100,100]$.
Locally-rotationally-symmetric Bianchi type-I viscous and non -viscous cosmological models are explored in general relativity (GR) and in f(R,T) gravity. Solutions are obtained by assuming that the expansion scalar is proportional to the shear scalar which yields a constant value for the deceleration parameter (q=2). Constraints are obtained by requiring the physical viability of the solutions. A comparison is made between the viscous and non-viscous models, and between the models in GR and in f(R,T) gravity. The metric potentials remain the same in GR and in f(R,T) gravity. Consequently, the geometrical behavior of the $f(R,T)$ gravity models remains the same as the models in GR. It is found that f(R,T) gravity or bulk viscosity does not affect the behavior of effective matter which acts as a stiff fluid in all models. The individual fluids have very rich behavior. In one of the viscous models, the matter either follows a semi-realistic EoS or exhibits a transition from stiff matter to phantom, depending on the values of the parameter. In another model, the matter describes radiation, dust, quintessence, phantom, and the cosmological constant for different values of the parameter. In general, f(R,T) gravity diminishes the effect of bulk viscosity.
In this paper, we study the stellar structure in terms of alternative theory of gravity specially by f (R;T) gravity theory. Here, we consider the function f (R;T) = R+2VT where R is the Ricci scalar, T is the stress-energy momentum and V is the coup ling constant. Using it we developed a stellar model that briefly explains the isotropic matter distribution within the compact object filled with perfect fluid. The stability of the model is shown by several physical and stability conditions. With the accecptibility of our theory, we were able to collect data for compact stars like PSR-B0943+10, CEN X-3, SMC X-4, Her X-1 and 4U1538-52 with great accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا