ﻻ يوجد ملخص باللغة العربية
We demonstrate a novel technique for calibrating the energy scale of the XMM EPIC-pn detector, which allows us to measure bulk flows in the intracluster medium (ICM) of the Perseus and Coma clusters. The procedure uses the instrumental lines present in all observations, in particular, Cu-Ka. By studying their spatial and temporal variations, in addition to incorporating calibration observations, we refined the absolute energy scale to better than 150 km/s at the Fe-K line, a large improvement over the nominal accuracy of 550 km/s. We then mapped the bulk motions over much of the central 1200 and 800 kpc of Perseus and Coma, respectively, in spatial regions down to 65 and 140 kpc size. We cross-checked our procedure by comparing our measurements with those found in Perseus by Hitomi for an overlapping region, finding consistent results. For Perseus, there is a LoS velocity increase of 480+-210 km/s (1sigma) 250 kpc east of the nucleus. This region is associated with a cold front, providing direct evidence of the ICM sloshing in the potential well. Assuming the intrinsic distribution of bulk motions is Gaussian, its width is 214+-85 km/s, excluding systematics. Removing the sloshing region, this is reduced to 20-150 km/s, which is similar in magnitude to the Hitomi line width measurements in undisturbed regions. In Coma, the line-of-sight velocity of the ICM varies between the velocities of the two central galaxies. Maps of the gas velocity and metallicity provide clues about the merger history of the Coma, with material to the north and east of the cluster core having a velocity similar to NGC 4874, while that to the south and west has velocities close to NGC 4889. Our results highlight the difference between a merging system, such as Coma, where we observe a ~1000 km/s range in velocity, and a relatively relaxed system, such as Perseus, with much weaker bulk motions. [abridged]
Based on XMM-Newton observations of a sample of galaxy clusters, we have measured the elemental abundances (mainly O, Si, S, and Fe) and their spatial distributions in the intracluster medium (ICM). In the outer region of the ICM, observations of the
Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive
The XMM-Newton Distant Cluster Project (XDCP) aims at the identification of a well defined sample of X-ray selected clusters of galaxies at redshifts z>0.8. We present a catalogue of the extended sources in one the deepest ~250 ksec XMM-Newton fields
The extreme environment provided by the Cartwheel ring is analyzed to study its X-ray and optical-UV properties. We compare the Cartwheel with the other members of its group and study the system as a whole in the X-ray band. We analyze the data of th
Buoyant bubbles of relativistic plasma in cluster cores plausibly play a key role in conveying the energy from a supermassive black hole to the intracluster medium (ICM) - the process known as radio-mode AGN feedback. Energy conservation guarantees t