ﻻ يوجد ملخص باللغة العربية
We study a critical limit in which asymptotically-AdS black holes develop maximal conical deficits and their horizons become non-compact. When applied to stationary rotating black holes this limit coincides with the ultraspinning limit and yields the Superentropic black holes whose entropy was derived recently and found to exceed the maximal possible bound imposed by the Reverse Isoperimetric Inequality. To gain more insight into this peculiar result, we study this limit in the context of accelerated AdS black holes that have unequal deficits along the polar axes, hence the maximal deficit need not appear on both poles simultaneously. Surprisingly, we find that in the presence of acceleration, the critical limit becomes smooth, and is obtained simply by taking various upper bounds in the parameter space that we elucidate. The Critical black holes thus obtained have many common features with Superentropic black holes, but are manifestly not superentropic. This raises a concern as to whether Superentropic black holes actually are superentropic. We argue that this may not be so and that the original conclusion is likely attributed to the degeneracy of the resulting first law.
We propose a correspondence between an Anyon Van der Waals fluid and a (2+1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter $alpha$
We study rotating global AdS solutions in five-dimensional Einstein gravity coupled to a multiplet complex scalar within a cohomogeneity-1 ansatz. The onset of the gravitational and scalar field superradiant instabilities of the Myers-Perry-AdS black
We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the sol
The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and re-emits information, determines whether infalling observers experience an
We propose a unitary toy model of black hole evaporation, in which the entanglement between the interior and exterior degrees of freedom vanishes at late times. Our model possesses the information-free property and satisfies the niceness conditions d