ﻻ يوجد ملخص باللغة العربية
Context. Obscuration events caused by outflowing clumps or streams of high column density, low ionisation gas, heavily absorbing the X-ray continuum, have been witnessed in a number of Seyfert galaxies. Aims. We report on the X-ray spectral-timing analysis of the December 2016 obscuration event in NGC 3783, aimed at probing variability of the X-ray obscurer on the shortest possible timescales. The main goals of this study are to obtain independent constraints on the density, and ultimately on the distance of the obscuring gas, as well as to characterise the impact of variable obscuration on the observed X-ray spectral-timing characteristics of Seyfert galaxies. Methods. We carried out a comparative analysis of NGC 3783 during unobscured (using archival 2000-2001 XMM-Newton data) and obscured states (using XMM-Newton and NuSTAR data from the 2016 observational campaign). The timescales analysed range between ten hours and about one hour. This study was then generalized to discuss the signatures of variable obscuration in the X-ray spectral-timing characteristics of Seyfert galaxies as a function of the physical properties of the obscuring gas. Results. The X-ray obscurer in NGC 3783 is found to vary on timescales between about one hour to ten hours. This variability is incoherent with the variations of the X-ray continuum. A fast response (on timescales shorter than about 1.5 ks) of the ionisation state of the obscuring gas to the short timescale variability of the primary X-ray continuum provides a satisfactory interpretation of all the observed X-ray spectral-timing properties. This study enabled us to put independent constraints on the density and location of the obscuring gas. We found the gas to have a density of $n_{e}> 7.1 times 10^7 rm{cm^{-3}}$, consistent with being part of the broad line region.
We have characterized the energy-dependent X-ray variability properties of the Seyfert~1 galaxy NGC 3783 using archival XMM-Newton and Rossi X-ray Timing Explorer data. The high-frequency fluctuation power spectral density function (PSD) slope is con
Our Swift monitoring program triggered two joint XMM-Newton, NuSTAR and HST observations on 11 and 21 December 2016 targeting NGC 3783, as its soft X-ray continuum was heavily obscured. Consequently, emission features, including the O VII radiative r
We study the variability mechanism of active galactic nuclei (AGN) within the framework of the flare model. To this end we examine the case of Seyfert/LINER galaxy NGC 4258, which is observed at high inclination angle and exhibits rapid fluctuations
It is thought that ultraluminous X-ray sources (ULXs) are mainly powered by super-Eddington accreting neutron stars or black holes as shown by recent discovery of X-ray pulsations and relativistic winds. This work presents a follow up study of the sp
Ultra-Luminous X-ray sources are accreting black holes that might represent strong evidence of the Intermediate Mass Black Holes (IMBH), proposed to exist by theoretical studies but with no firm detection (as a class) so far. We analyze the best X-ra