ترغب بنشر مسار تعليمي؟ اضغط هنا

Incoherent fast variability of X-ray obscurers. The case of NGC 3783

78   0   0.0 ( 0 )
 نشر من قبل Barbara De Marco
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Obscuration events caused by outflowing clumps or streams of high column density, low ionisation gas, heavily absorbing the X-ray continuum, have been witnessed in a number of Seyfert galaxies. Aims. We report on the X-ray spectral-timing analysis of the December 2016 obscuration event in NGC 3783, aimed at probing variability of the X-ray obscurer on the shortest possible timescales. The main goals of this study are to obtain independent constraints on the density, and ultimately on the distance of the obscuring gas, as well as to characterise the impact of variable obscuration on the observed X-ray spectral-timing characteristics of Seyfert galaxies. Methods. We carried out a comparative analysis of NGC 3783 during unobscured (using archival 2000-2001 XMM-Newton data) and obscured states (using XMM-Newton and NuSTAR data from the 2016 observational campaign). The timescales analysed range between ten hours and about one hour. This study was then generalized to discuss the signatures of variable obscuration in the X-ray spectral-timing characteristics of Seyfert galaxies as a function of the physical properties of the obscuring gas. Results. The X-ray obscurer in NGC 3783 is found to vary on timescales between about one hour to ten hours. This variability is incoherent with the variations of the X-ray continuum. A fast response (on timescales shorter than about 1.5 ks) of the ionisation state of the obscuring gas to the short timescale variability of the primary X-ray continuum provides a satisfactory interpretation of all the observed X-ray spectral-timing properties. This study enabled us to put independent constraints on the density and location of the obscuring gas. We found the gas to have a density of $n_{e}> 7.1 times 10^7 rm{cm^{-3}}$, consistent with being part of the broad line region.



قيم البحث

اقرأ أيضاً

71 - A. Markowitz 2005
We have characterized the energy-dependent X-ray variability properties of the Seyfert~1 galaxy NGC 3783 using archival XMM-Newton and Rossi X-ray Timing Explorer data. The high-frequency fluctuation power spectral density function (PSD) slope is con sistent with flattening towards higher energies. Light curve cross correlation functions yield no significant lags, but peak coefficients generally decrease as energy separation of the bands increases on both short and long timescales. We have measured the coherence between various X-ray bands over the temporal frequency range of 6e-8 to 1e-4 Hz; this range includes the temporal frequency of the low-frequency power spectral density function (PSD) break tentatively detected by Markowitz et al. and includes the lowest temporal frequency over which coherence has been measured in any AGN to date. Coherence is generally near unity at these temporal frequencies, though it decreases slightly as energy separation of the bands increases. Temporal frequency-dependent phase lags are detected on short time scales; phase lags are consistent with increasing as energy separation increases or as temporal frequency decreases. All of these results are similar to those obtained previously for several Seyfert galaxies and stellar-mass black hole systems. Qualitatively, these results are consistent with the variability models of Kotov et al. and Lyubarskii, wherein the X-ray variability is due to inwardly propagating variations in the local mass accretion rate.
Our Swift monitoring program triggered two joint XMM-Newton, NuSTAR and HST observations on 11 and 21 December 2016 targeting NGC 3783, as its soft X-ray continuum was heavily obscured. Consequently, emission features, including the O VII radiative r ecombination continuum, stand out above the diminished continuum. We focus on the photoionized emission features in the December 2016 RGS spectra and compare them to the time-averaged RGS spectrum obtained in 2000--2001 when the continuum was unobscured. A two-phase photoionized plasma is required to account for the narrow emission features. These narrow emission features are weakly varying between 2000--2001 and December 2016. We also find a statistically significant broad emission component in the time-averaged RGS spectrum in 2000--2001. This broad emission component is significantly weaker in December 2016, suggesting that the obscurer is farther away than the X-ray broad-line region. In addition, by analyzing the archival high-resolution X-ray spectra, we find that nine photoionized absorption components with different ionization parameters and kinematics are required for the warm absorber in X-rays.
We study the variability mechanism of active galactic nuclei (AGN) within the framework of the flare model. To this end we examine the case of Seyfert/LINER galaxy NGC 4258, which is observed at high inclination angle and exhibits rapid fluctuations of the X-ray light curve. We construct a model light curve based on the assumption of magnetic flares localized in the equatorial plane and orbiting with Keplerian speed at each given radius. We calculate the level of variability as a function of the inclination of an observer, taking into account all effects of general relativity near a rotating supermassive black hole. The variability level is a monotonic function of the source inclination. It rises more rapidly for larger values of the black hole spin (Kerr parameter) and for steeper emissivity (index beta of the radial profile). We compare the expected level of variability for the viewing angle 81.6 deg, as inferred for NGC 4258, with the case of moderate viewing angles about 30 deg, typical for Seyfert type-1 galaxies. Highly inclined sources such as this one are particularly suitable to test the flare model because the effects of orbital motion, Doppler boosting and light bending are all expected to have maximum when the accretion disk is seen almost edge-on. The model is consistent with the NGC 4258 variability, where the obscuring material is thought to be localized mainly towards the equatorial plane rather than forming a geometrically thick torus. Once the intrinsic time-scales of the flare duration are determined to better precision, this kind of highly inclined objects with a precisely known mass of the black hole can be used to set independent constraints on the spin parameter.
106 - A. Robba , C. Pinto , D. J. Walton 2021
It is thought that ultraluminous X-ray sources (ULXs) are mainly powered by super-Eddington accreting neutron stars or black holes as shown by recent discovery of X-ray pulsations and relativistic winds. This work presents a follow up study of the sp ectral evolution over two decades of the pulsing ULX NGC 1313 X-2, in order to understand the structure of the accretion disc. The primary objective is to determine the shape and nature of the dominant spectral components by investigating their variability with the changes in the source luminosity. We have performed a spectral analysis over the canonical 0.3-10 keV energy band of all the high signal-to-noise XMM-Newton observations, and we have tested a number of different spectral models, which should approximate super-Eddington accretion discs. The baseline model consists of two thermal blackbody components with different temperatures plus an exponential cutoff powerlaw. In particular, the hotter and brighter thermal component describes the emission from the super-Eddington inner disc and the cutoff powerlaw the contribution from the accretion column of the neutron star. Instead, the cooler component describes the emission from the outer region of the disc close to the spherisation radius and the wind. The luminosity-temperature relation for the cool component follows a negative trend, which is not consistent with L$propto$T$^4$, as expected from a sub-Eddington thin disc of Shakura-Sunayev, nor with L$propto$T$^2$, as expected for advection-dominated disc, but would rather agree with a wind-dominated X-ray emitting region. Instead, the (L,T) relation for the hotter component is somewhere in between the first two theoretical scenarios. Our findings agree with the super-Eddington scenario and provide further detail on the disc structure. The source spectral evolution is qualitatively similar to that seen in NGC1313 X-1 and HolmbergIX X-1.
Ultra-Luminous X-ray sources are accreting black holes that might represent strong evidence of the Intermediate Mass Black Holes (IMBH), proposed to exist by theoretical studies but with no firm detection (as a class) so far. We analyze the best X-ra y timing and spectral data from the ULX in NGC 5408 provided by XMM-Newton. The main goal is to study the broad-band noise variability of the source. We found an anti-correlation of the fractional root-mean square variability versus the intensity of the source, similar to black-hole binaries during hard states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا