ترغب بنشر مسار تعليمي؟ اضغط هنا

First direct measurement of the intrinsic dipole moment in pear-shaped thorium isotopes

45   0   0.0 ( 0 )
 نشر من قبل David O'Donnell
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is now well established that atomic nuclei composed of certain combinations of protons and neutrons can adopt reflection-asymmetric, or octupole-deformed, shapes at low excitation energy. These nuclei show promise in the search for a permanent atomic electric dipole moment, the existence of which has implications for physics beyond the Standard Model. Theoretical studies have suggested that certain isotopes of thorium may have the largest octupole deformation. However, due to experimental challenges, the extent of the octupole collectivity in the low-energy states in these thorium nuclei has not yet been demonstrated. This paper reports measurements of the lifetimes of low-energy states in 228Th (Z = 90) undertaken using the mirror symmetric centroid difference method, which is a direct electronic fast-timing technique. Lifetime measurements of the low-lying Jp = 1- and 3- states, which are the first for a thorium isotope, have allowed the B(E1) rates and the intrinsic dipole moment to be determined. The results are in agreement with those of previous theoretical calculations allowing the extent of the octupole deformation of 228Th to be estimated. This study indicates that the nuclei 229Th and 229Pa (Z = 91) may be good candidates for the search for a permanent atomic electric dipole moment.

قيم البحث

اقرأ أيضاً

The radioactive radium-225 ($^{225}$Ra) atom is a favorable case to search for a permanent electric dipole moment (EDM). Due to its strong nuclear octupole deformation and large atomic mass, $^{225}$Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of $^{225}$Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic EDM, reaching an upper limit of $|$$d$($^{225}$Ra)$|$ $<$ $5.0!times!10^{-22}$ $e cdot$cm (95$%$ confidence).
The discovery of naturally occurring long-lived isomeric states (t_1/2 > 10^8 yr) in the neutron-deficient isotopes 211,213,217,218Th [A. Marinov et al., Phys. Rev. C 76, 021303(R) (2007)] was reexamined using accelerator mass spectrometry (AMS). Bec ause AMS does not suffer from molecular isobaric background in the detection system, it is an extremely sensitive technique. Despite our up to two orders of magnitude higher sensitivity we cannot confirm the discoveries of neutron-deficient thorium isotopes and provide upper limits for their abundances.
91 - H. J. Xia , X. Y. Wu , H. Mei 2018
We develop both relativistic mean field and beyond approaches for hypernuclei with possible quadrupole-octupole deformation or pear-like shapes based on relativistic point-coupling energy density functionals. The symmetries broken in the mean-field s tates are recovered with parity, particle-number, and angular momentum projections. We take $^{21}_Lambda$Ne as an example to illustrate the method, where the $Lambda$ hyperon is put on one of the two lowest-energy orbits (labeled as $Lambda_s, Lambda_p$), respectively. We find that the $Lambda$ hyperon in both cases disfavors the formation of a reflection-asymmetric molecular-like $^{16}$O$+alpha$ structure in $^{20}$Ne, which is consistent with the Nilsson diagram for the hyperon in $(beta_2, beta_3)$ deformation plane. In particular, we show that the negative-parity states with the configuration $^{20}$Ne($K^pi=0^-)otimes Lambda_s$ are close in energy to those with the configuration $^{20}$Ne($K^pi=0^+)otimes Lambda_p$, even though they have very different structures. The $Lambda_s$ ($Lambda_p$) becomes more and more concentrated around the bottom (top) of the pear with the increase of octupole deformation.
394 - C. Abel , S. Afach , N. J. Ayres 2020
We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramseys method of separated oscillating magnetic fields with ultracold neutrons (UCN). Our measurement stands in th e long history of EDM experiments probing physics violating time reversal invariance. The salient features of this experiment were the use of a Hg-199 co-magnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic field changes. The statistical analysis was performed on blinded datasets by two separate groups while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is $d_{rm n} = (0.0pm1.1_{rm stat}pm0.2_{rm sys})times10^{-26}e,{rm cm}$.
The nuclear magnetic moment of the ground state of $^{55}$Ni ($I^{pi}=3/2^{-}, T_{1/2}=204$ ms) has been deduced to be $|mu$^{55}Ni)$|=(0.976 pm 0.026)$ $mu_N$ using the $beta$-NMR technique. Results of a shell model calculation in the full textit{fp } shell model space with the GXPF1 interaction reproduce the experimental value. Together with the known magnetic moment of the mirror partner $^{55}$Co, the isoscalar spin expectation value was extracted as $<sum sigma_z >=0.91 pm 0.07$. The $<sum sigma_z>$ shows a similar trend as that established in the textit{sd} shell. The present theoretical interpretations of both $mu(^{55}$Ni) and $<sum sigma_z>$ for the $T=1/2$, A=55 mirror partners support the softness of the $^{56}$Ni core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا