ﻻ يوجد ملخص باللغة العربية
We show quantum lower bounds for two problems. First, we consider the problem of determining if a sequence of parentheses is a properly balanced one (a Dyck word), with a depth of at most $k$. It has been known that, for any $k$, $tilde{O}(sqrt{n})$ queries suffice, with a $tilde{O}$ term depending on $k$. We prove a lower bound of $Omega(c^k sqrt{n})$, showing that the complexity of this problem increases exponentially in $k$. This is interesting as a representative example of star-free languages for which a surprising $tilde{O}(sqrt{n})$ query quantum algorithm was recently constructed by Aaronson et al. Second, we consider connectivity problems on directed/undirected grid in 2 dimensions, if some of the edges of the grid may be missing. By embedding the balanced parentheses problem into the grid, we show a lower bound of $Omega(n^{1.5-epsilon})$ for the directed 2D grid and $Omega(n^{2-epsilon})$ for the undirected 2D grid. The directed problem is interesting as a black-box model for a class of classical dynamic programming strategies including the one that is usually used for the well-known edit distance problem. We also show a generalization of this result to more than 2 dimensions.
We study the quantum query complexity of two problems. First, we consider the problem of determining if a sequence of parentheses is a properly balanced one (a Dyck word), with a depth of at most $k$. We call this the $Dyck_{k,n}$ problem. We prove
We prove lower bounds on the error probability of a quantum algorithm for searching through an unordered list of N items, as a function of the number T of queries it makes. In particular, if T=O(sqrt{N}) then the error is lower bounded by a constant.
We examine the number T of queries that a quantum network requires to compute several Boolean functions on {0,1}^N in the black-box model. We show that, in the black-box model, the exponential quantum speed-up obtained for partial functions (i.e. pro
Function inversion is the problem that given a random function $f: [M] to [N]$, we want to find pre-image of any image $f^{-1}(y)$ in time $T$. In this work, we revisit this problem under the preprocessing model where we can compute some auxiliary in
Brand~ao and Svore very recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension $n$ of the problem and the number $m$ of