ترغب بنشر مسار تعليمي؟ اضغط هنا

Evading the model sign problem in the PNJL model with repulsive vector-type interaction via path optimization

87   0   0.0 ( 0 )
 نشر من قبل Akira Ohnishi
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the sign problem in the Polyakov loop extended Nambu--Jona-Lasinio model with repulsive vector-type interaction by using the path optimization method. In this model, both of the Polyakov loop and the vector-type interaction cause the model sign problem, and several prescriptions have been utilized even in the mean field treatment. In the path optimization method, integration variables are complexified and the integration path (manifold) is optimized to evade the sign problem, or equivalently to enhance the average phase factor. Within the homogeneous field ansatz, the path is optimized by using the feedforward neural network. We find that the assumptions adopted in previous works, $mathrm{Re},A_8 simeq 0$ and $mathrm{Re},omega simeq 0$, can be justified from the Monte-Carlo configurations sampled on the optimized path. We also derive the Euler-Lagrange equation for the optimal path to satisfy. The two optimized paths, the solution of the Euler-Lagrange equation and the variationally optimized path, agree with each other in the region with large statistical weight.



قيم البحث

اقرأ أيضاً

The path optimization method is applied to a QCD effective model with the Polyakov loop and the repulsive vector-type interaction at finite temperature and density to circumvent the model sign problem. We show how the path optimization method can inc rease the average phase factor and control the model sign problem. This is the first study which correctly treats the repulsive vector-type interaction in the QCD effective model with the Polyakov-loop via the Markov-chain Monte-Carlo approach. It is shown that the complexification of the temporal component of the gluon field and also the vector-type auxiliary field are necessary to evade the model sign problem within the standard path-integral formulation.
We apply the path optimization method to a QCD effective model with the Polyakov loop at finite density to circumvent the model sign problem. The Polyakov-loop extended Nambu--Jona-Lasinio model is employed as the typical QCD effective model and then the hybrid Monte-Carlo method is used to perform the path integration. To control the sign problem, the path optimization method is used with complexification of temporal gluon fields to modify the integral path in the complex space. We show that the average phase factor is well improved on the modified integral-path compared with that on the original one. This indicates that the complexification of temporal gluon fields may be enough to control the sign problem of QCD in the path optimization method.
281 - Yuto Mori , Kouji Kashiwa , 2017
We introduce the feedforward neural network to attack the sign problem via the path optimization method. The variables of integration is complexified and the integration path is optimized in the complexified space by minimizing the cost function whic h reflects the seriousness of the sign problem. For the preparation and optimization of the integral path in multi-dimensional systems, we utilize the feedforward neural network. We examine the validity and usefulness of the method in the two-dimensional complex $lambda phi^4$ theory at finite chemical potential as an example of the quantum field theory having the sign problem. We show that the average phase factor is significantly enhanced after the optimization and then we can safely perform the hybrid Monte-Carlo method.
The path optimization has been proposed to weaken the sign problem which appears in some field theories such as finite density QCD. In this method, we optimize the integration path in complex plain to enhance the average phase factor. In this study, we discuss the application of this method to low dimensional QCD as a first step of finite density QCD.
We construct four kinds of Z3-symmetric three-dimentional (3-d) Potts models, each with different number of states at each site on a 3-d lattice, by extending the 3-d three-state Potts model. Comparing the ordinary Potts model with the four Z3-symmet ric Potts models, we investigate how Z3 symmetry affects the sign problem and see how the deconfinement transition line changes in the $mu-kappa$ plane as the number of states increases, where $mu$ $(kappa)$ plays a role of chemical potential (temperature) in the models. We find that the sign problem is almost cured by imposing Z3 symmetry. This mechanism may happen in Z3-symmetric QCD-like theory. We also show that the deconfinement transition line has stronger $mu$-dependence with respect to increasing the number of states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا