ﻻ يوجد ملخص باللغة العربية
The emission from PSR J1107-5907 is erratic. Sometimes the radio pulse is undetectable, at other times the pulsed emission is weak, and for short durations the emission can be very bright. In order to improve our understanding of these state changes, we have identified archival data sets from the Parkes radio telescope in which the bright emission is present, and find that the emission never switches from the bright state to the weak state, but instead always transitions to the off state. Previous work had suggested the identification of the off state as an extreme manifestation of the weak state. However, the connection between the off and bright emission reported here suggests that the emission can be interpreted as undergoing only two emission states: a bursting state consisting of both bright pulses and nulls as well as the weak-emission state.
The rare intermittent pulsars pose some of the most challenging questions surrounding the pulsar emission mechanism, but typically have relatively minimal low-frequency ($lesssim$ 300 MHz) coverage. We present the first low-frequency detection of the
We use observations from the Boolardy Engineering Test Array (BETA) of the Australian Square Kilometre Array Pathfinder (ASKAP) telescope to search for transient radio sources in the field around the intermittent pulsar PSR J1107-5907. The pulsar is
We have observed PSR~B1534+12 (J1537+1155), a pulsar with a neutron star companion, using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). We found that this pulsar shows two distinct emission states: a weak state with a wide pulse p
The energetic pulsar PSR B1706-44 and the adjacent supernova remnant (SNR) candidate G 343.1-2.3 were observed by H.E.S.S. during a dedicated observational campaign in 2007. A new source of very-high-energy (VHE; E > 100 GeV) gamma-ray emission, HESS
Cool core galaxy clusters are considered to be dynamically relaxed clusters with regular morphology and highly X-ray luminous central region. However, cool core clusters can also be sites for merging events that exhibit cold fronts in X-ray and mini-