ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the emission states of PSR J1107-5907

295   0   0.0 ( 0 )
 نشر من قبل Jingbo Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The emission from PSR J1107-5907 is erratic. Sometimes the radio pulse is undetectable, at other times the pulsed emission is weak, and for short durations the emission can be very bright. In order to improve our understanding of these state changes, we have identified archival data sets from the Parkes radio telescope in which the bright emission is present, and find that the emission never switches from the bright state to the weak state, but instead always transitions to the off state. Previous work had suggested the identification of the off state as an extreme manifestation of the weak state. However, the connection between the off and bright emission reported here suggests that the emission can be interpreted as undergoing only two emission states: a bursting state consisting of both bright pulses and nulls as well as the weak-emission state.



قيم البحث

اقرأ أيضاً

The rare intermittent pulsars pose some of the most challenging questions surrounding the pulsar emission mechanism, but typically have relatively minimal low-frequency ($lesssim$ 300 MHz) coverage. We present the first low-frequency detection of the intermittent pulsar J1107-5907 with the Murchison Widefield Array (MWA) at 154 MHz and the simultaneous detection from the recently upgraded Molonglo Observatory Synthesis Telescope (UTMOST) at 835 MHz, as part of an on-going observing campaign. During a 30-minute simultaneous observation, we detected the pulsar in its bright emission state for approximately 15 minutes, where 86 and 283 pulses were detected above a signal-to-noise threshold of 6 with the MWA and UTMOST, respectively. Of the detected pulses, 51 had counterparts at both frequencies and exhibited steep spectral indices for both the bright main pulse component and the precursor component. We find that the bright state pulse energy distribution is best parameterised by a log-normal distribution at both frequencies, contrary to previous results which suggested a power law distribution. Further low-frequency observations are required in order to explore in detail aspects such as pulse-to-pulse variability, intensity modulations and to better constrain the signal propagation effects due to the interstellar medium and intermittency characteristics at these frequencies. The spectral index, extended profile emission covering a large fraction of pulse longitude, and the broadband intermittency of PSR J1107-5907 suggests that future low-frequency pulsar searches, for instance those planned with SKA-Low, will be in an excellent position to find and investigate new pulsars of this type.
139 - G. Hobbs , I. Heywood , M. E. Bell 2015
We use observations from the Boolardy Engineering Test Array (BETA) of the Australian Square Kilometre Array Pathfinder (ASKAP) telescope to search for transient radio sources in the field around the intermittent pulsar PSR J1107-5907. The pulsar is thought to switch between an off state in which no emission is detectable, a weak state and a strong state. We ran three independent transient detection pipelines on two-minute snapshot images from a 13 hour BETA observation in order to 1) study the emission from the pulsar, 2) search for other transient emission from elsewhere in the image and 3) to compare the results from the different transient detection pipelines. The pulsar was easily detected as a transient source and, over the course of the observations, it switched into the strong state three times giving a typical timescale between the strong emission states of 3.7 hours. After the first switch it remained in the strong state for almost 40 minutes. The other strong states lasted less than 4 minutes. The second state change was confirmed using observations with the Parkes radio telescope. No other transient events were found and we place constraints on the surface density of such events on these timescales. The high sensitivity Parkes observations enabled us to detect individual bright pulses during the weak state and to study the strong state over a wide observing band. We conclude by showing that future transient surveys with ASKAP will have the potential to probe the intermittent pulsar population.
326 - S. Q. Wang , G. Hobbs , J. B. Wang 2020
We have observed PSR~B1534+12 (J1537+1155), a pulsar with a neutron star companion, using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). We found that this pulsar shows two distinct emission states: a weak state with a wide pulse p rofile and a burst state with a narrow pulse profile. The weak state is always present. We cannot, with our current data, determine whether the pulse energy of the weak state follows a normal or a log-normal distribution. The burst state energy distribution follows a power-law. The amplitude of the single pulse emission in the burst state varies significantly; the peak flux intensity of the brightest pulse is 334 times stronger than that of the average pulse. We also examined the timing precision achievable using only bright pulses, which showed no demonstrable improvement because of pulse jitter and therefore quantified the jitter noise level for this pulsar.
The energetic pulsar PSR B1706-44 and the adjacent supernova remnant (SNR) candidate G 343.1-2.3 were observed by H.E.S.S. during a dedicated observational campaign in 2007. A new source of very-high-energy (VHE; E > 100 GeV) gamma-ray emission, HESS J1708-443, was discovered with its centroid at RA(J2000) = 17h08m10s and Dec(J2000) = -44d21, with a statistical error of 3 arcmin on each axis. The VHE gamma-ray source is significantly more extended than the H.E.S.S. point-spread function, with an intrinsic Gaussian width of 0.29 +/- 0.04 deg. Its energy spectrum can be described by a power law with a photon index Gamma = 2.0 +/- 0.1 (stat) +/- 0.2 (sys). The integral flux measured between 1-10 TeV is ~17% of the Crab Nebula flux in the same energy range. The possible associations with PSR B1706-44 and SNR G343.1-2.3 are discussed.
Cool core galaxy clusters are considered to be dynamically relaxed clusters with regular morphology and highly X-ray luminous central region. However, cool core clusters can also be sites for merging events that exhibit cold fronts in X-ray and mini- halos in radio. We present recent radio/X-ray observations of the Phoenix Cluster or SPT-CL J2344-4243 at the redshift of $z=0.596$. Using archival {it Chandra} X-ray observations, we detect spiraling cool gas around the cluster core as well as discover two cold fronts near the core. It is perhaps the most distant galaxy cluster to date known to host cold fronts. Also, we present JVLAfootnote{Jansky Very Large Array url{https://science.nrao.edu/facilities/vla}} 1.52 GHz observations of the minihalo, previously discovered at 610 MHz with GMRTfootnote{Giant Metrewave Radio Telescope url{http://www.gmrt.ncra.tifr.res.in}} observations in the center of the Phoenix galaxy cluster. The minihalo flux density at 1.52 GHz is $9.65 pm 0.97$ mJy with the spectral index between 610 MHz and 1.52 GHz being $-0.98 pm 0.16$footnote{$S_{ u} = u^{alpha}$ where $S_{ u}$}. A possible origin of these radio sources is turbulence induced by sloshing of the gas in the cluster core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا