ترغب بنشر مسار تعليمي؟ اضغط هنا

Layer engineered interlayer excitons

80   0   0.0 ( 0 )
 نشر من قبل Qinghai Tan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photoluminescence (PL) from excitons serves as a powerful tool to characterize the optoelectronic property and band structure of semiconductors, especially for atomically thin 2D transition metal chalcogenide (TMD) materials. However, PL quenches quickly when the thickness of TMD material increases from monolayer to few-layers, due to the change from direct to indirect band transition. Here we show that PL can be recovered by engineering multilayer heterostructures, with the band transition reserved to be direct type. We report emission from layer engineered interlayer excitons from these multilayer heterostructures. Moreover, as desired for valleytronic devices, the lifetime, valley polarization, and the valley lifetime of the generated interlayer excitons can all be significantly improved as compared with that in the monolayer-monolayer heterostructure. Our results pave the way for controlling the properties of interlayer excitons by layer engineering.



قيم البحث

اقرأ أيضاً

Coulomb bound electron-hole pairs, excitons, govern the optical properties of semi-conducting transition metal dichalcogenides like MoS$_2$ and WSe$_2$. We study optical transitions at the K-point for 2H homobilayer MoS$_2$ in Density Functional Theo ry (DFT) including excitonic effects and compare with reflectivity measurements in high quality samples encapsulated in hexagonal BN. In both calculated and measured spectra we find a strong interlayer exciton transition in energy between A and B intralayer excitons, observable for T$=4 -300$ K, whereas no such transition is observed for the monolayer in the same structure in this energy range. The interlayer excitons consist of an electron localized in one layer and a hole state delocalized over the bilayer, which results in the unusual combination of high oscillator strength and a static dipole moment. We also find signatures of interlayer excitons involving the second highest valence band (B) and compare absorption calculations for different bilayer stackings. For homotrilayer MoS$_2$ we also observe interlayer excitons and an energy splitting between different intralayer A-excitons originating from the middle and outer layers, respectively.
254 - Zefei Wu , Yu Han , Wei Zhu 2014
We demonstrate that surface relaxation, which is insignificant in trilayer graphene, starts to manifest in Bernal-stacked tetralayer graphene. Bernal-stacked few-layer graphene has been investigated by analyzing its Landau level spectra through quant um capacitance measurements. We find that in trilayer graphene, the interlayer interaction parameters were similar to that of graphite. However, in tetralayer graphene, the hopping parameters between the bulk and surface bilayers are quite different. This shows a direct evidence for the surface relaxation phenomena. In spite of the fact that the Van der Waals interaction between the carbon layers is thought to be insignificant, we suggest that the interlayer interaction is an important factor in explaining the observed results and the symmetry-breaking effects in graphene sublattice are not negligible.
The optical properties of the two-dimensional (2D) crystals are dominated by tightly bound electron-hole pairs (excitons) and lattice vibration modes (phonons). The exciton-phonon interaction is fundamentally important to understand the optical prope rties of 2D materials and thus help develop emerging 2D crystal based optoelectronic devices. Here, we presented the excitonic resonant Raman scattering (RRS) spectra of few-layer WS$_2$ excited by 11 lasers lines covered all of A, B and C exciton transition energies at different sample temperatures from 4 to 300 K. As a result, we are not only able to probe the forbidden phonon modes unobserved in ordinary Raman scattering, but also can determine the bright and dark state fine structures of 1s A exciton. In particular, we also observed the quantum interference between low-energy discrete phonon and exciton continuum under resonant excitation. Our works pave a way to understand the exciton-phonon coupling and many-body effects in 2D materials.
Van der Waals heterostructures offer attractive opportunities to design quantum materials. For instance, transition metal dichalcogenides (TMDs) possess three quantum degrees of freedom: spin, valley index, and layer index. Further, twisted TMD heter obilayers can form moire patterns that modulate the electronic band structure according to atomic registry, leading to spatial confinement of interlayer exciton (IXs). Here we report the observation of spin-layer locking of IXs trapped in moire potentials formed in a heterostructure of bilayer 2H-MoSe$_2$ and monolayer WSe$_2$. The phenomenon of locked electron spin and layer index leads to two quantum-confined IX species with distinct spin-layer-valley configurations. Furthermore, we observe that the atomic registries of the moire trapping sites in the three layers are intrinsically locked together due to the 2H-type stacking characteristic of bilayer TMDs. These results identify the layer index as a useful degree of freedom to engineer tunable few-level quantum systems in two-dimensional heterostructures.
Diverse interlayer tunability of physical properties of two-dimensional layers mostly lies in the covalent-like quasi-bonding that is significant in electronic structures but rather weak for energetics. Such characteristics result in various stacking orders that are energetically comparable but may significantly differ in terms of electronic structures, e.g. magnetism. Inspired by several recent experiments showing interlayer anti-ferromagnetically coupled CrI3 bilayers, we carried out first-principles calculations for CrI3 bilayers. We found that the anti-ferromagnetic coupling results from a new stacking order with the C2/m space group symmetry, rather than the graphene-like one with R3 as previously believed. Moreover, we demonstrated that the intra- and inter-layer couplings in CrI3 bilayer are governed by two different mechanisms, namely ferromagnetic super-exchange and direct-exchange interactions, which are largely decoupled because of their significant difference in strength at the strong- and weak-interaction limits. This allows the much weaker interlayer magnetic coupling to be more feasibly tuned by stacking orders solely. Given the fact that interlayer magnetic properties can be altered by changing crystal structure with different stacking orders, our work opens a new paradigm for tuning interlayer magnetic properties with the freedom of stacking order in two dimensional layered materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا