ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond Limber: Efficient computation of angular power spectra for galaxy clustering and weak lensing

130   0   0.0 ( 0 )
 نشر من قبل Xiao Fang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Angular two-point statistics of large-scale structure observables are important cosmological probes. To reach the high accuracy required by the statistical precision of future surveys, some of these statistics may need to be computed without the commonly employed Limber approximation; the exact computation however requires integration over Bessel functions, and a brute-force evaluation is slow to converge. We present a new method based on our generalized FFTLog algorithm for the efficient computation of angular power spectra beyond the Limber approximation. The new method significantly simplifies the calculation and improves the numerical speed and stability. It is easily extended to handle integrals involving derivatives of Bessel functions, making it equally applicable to numerically more challenging cases such as contributions from redshift-space distortions and Doppler effects. We implement our method for galaxy clustering and galaxy-galaxy lensing power spectra. We find that using the Limber approximation for galaxy clustering in future analyses like LSST Year 1 and DES Year 6 may cause significant biases in cosmological parameters, indicating that going beyond the Limber approximation is necessary for these analyses.

قيم البحث

اقرأ أيضاً

Accurate covariance matrices for two-point functions are critical for inferring cosmological parameters in likelihood analyses of large-scale structure surveys. Among various approaches to obtaining the covariance, analytic computation is much faster and less noisy than estimation from data or simulations. However, the transform of covariances from Fourier space to real space involves integrals with two Bessel integrals, which are numerically slow and easily affected by numerical uncertainties. Inaccurate covariances may lead to significant errors in the inference of the cosmological parameters. In this paper, we introduce a 2D-FFTLog algorithm for efficient, accurate and numerically stable computation of non-Gaussian real space covariances for both 3D and projected statistics. The 2D-FFTLog algorithm is easily extended to perform real space bin-averaging. We apply the algorithm to the covariances for galaxy clustering and weak lensing for a Dark Energy Survey Year 3-like and a Rubin Observatorys Legacy Survey of Space and Time Year 1-like survey, and demonstrate that for both surveys, our algorithm can produce numerically stable angular bin-averaged covariances with the flat sky approximation, which are sufficiently accurate for inferring cosmological parameters. The code CosmoCov for computing the real space covariances with or without the flat sky approximation is released along with this paper.
Advances in upcoming weak lensing surveys pose new challenges for an accurate modeling of the lensing observables. With their large sky coverage, common approximations based on a flat-sky geometry cannot be used anymore to evaluate all measurable ang ular scales. Moreover, additional relativistic effects manifest themselves on large scales and thus need to be accounted for. In particular, the lensing magnification cannot be correctly described by the standard lensing convergence only. We present the analytical solutions for the fully-relativistic weak lensing angular power spectra, including the contribution from primordial gravitational waves. We compare the results obtained by using the Limber approximation with the precise all-sky calculations using spherical harmonics. Our numerical evaluations show that general relativistic corrections are one order-of-magnitude below cosmic variance at small scales ($lgeq 10$). At large scales ($l<10$), however, neglecting them leads to more significant errors, especially when combined with the Limber approximation. Hence, a precise, fully-relativistic modeling is necessary at these largest scales.
102 - Keiichi Umetsu 2020
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of top ics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster--galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration--mass relation, the splashback radius, and implications from extensive mass calibration efforts for cluster cosmology.
We compare predictions for galaxy-galaxy lensing profiles and clustering from the Henriques et al. (2015) public version of the Munich semi-analytical model of galaxy formation (SAM) and the IllustrisTNG suite, primarily TNG300, with observations fro m KiDS+GAMA and SDSS-DR7 using four different selection functions for the lenses (stellar mass, stellar mass and group membership, stellar mass and isolation criteria, stellar mass and colour). We find that this version of the SAM does not agree well with the current data for stellar mass-only lenses with $M_ast > 10^{11},M_odot$. By decreasing the merger time for satellite galaxies as well as reducing the radio-mode AGN accretion efficiency in the SAM, we obtain better agreement, both for the lensing and the clustering, at the high mass end. We show that the new model is consistent with the signals for central galaxies presented in Velliscig et al. (2017). Turning to the hydrodynamical simulation, TNG300 produces good lensing predictions, both for stellar mass-only ($chi^2 = 1.81$ compared to $chi^2 = 7.79$ for the SAM), and locally brightest galaxies samples ($chi^2 = 3.80$ compared to $chi^2 = 5.01$). With added dust corrections to the colours it matches the SDSS clustering signal well for red low mass galaxies. We find that both the SAMs and TNG300 predict $sim 50,%$ excessive lensing signals for intermediate mass red galaxies with $10.2 < log_{10} M_ast [ M_odot ] < 11.2$ at $r approx 0.6,h^{-1},mathrm{Mpc}$, which require further theoretical development.
The significant increase in precision that will be achieved by Stage IV cosmic shear surveys means that several currently used theoretical approximations may cease to be valid. An additional layer of complexity arises from the fact that many of these approximations are interdependent; the procedure to correct for one involves making another. Two such approximations that must be relaxed for upcoming experiments are the reduced shear approximation and the effect of neglecting magnification bias. Accomplishing this involves the calculation of the convergence bispectrum; typically subject to the Limber approximation. In this work, we compute the post-Limber convergence bispectrum, and the post-Limber reduced shear and magnification bias corrections to the angular power spectrum for a Euclid-like survey. We find that the Limber approximation significantly overestimates the bispectrum when any side of the bispectrum triangle, $ell_i<60$. However, the resulting changes in the reduced shear and magnification bias corrections are well below the sample variance for $ellleq5000$. We also compute a worst-case scenario for the additional biases on $w_0w_a$CDM cosmological parameters that result from the difference between the post-Limber and Limber approximated forms of the corrections. These further demonstrate that the reduced shear and magnification bias corrections can safely be treated under the Limber approximation for upcoming surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا