ﻻ يوجد ملخص باللغة العربية
Angular two-point statistics of large-scale structure observables are important cosmological probes. To reach the high accuracy required by the statistical precision of future surveys, some of these statistics may need to be computed without the commonly employed Limber approximation; the exact computation however requires integration over Bessel functions, and a brute-force evaluation is slow to converge. We present a new method based on our generalized FFTLog algorithm for the efficient computation of angular power spectra beyond the Limber approximation. The new method significantly simplifies the calculation and improves the numerical speed and stability. It is easily extended to handle integrals involving derivatives of Bessel functions, making it equally applicable to numerically more challenging cases such as contributions from redshift-space distortions and Doppler effects. We implement our method for galaxy clustering and galaxy-galaxy lensing power spectra. We find that using the Limber approximation for galaxy clustering in future analyses like LSST Year 1 and DES Year 6 may cause significant biases in cosmological parameters, indicating that going beyond the Limber approximation is necessary for these analyses.
Accurate covariance matrices for two-point functions are critical for inferring cosmological parameters in likelihood analyses of large-scale structure surveys. Among various approaches to obtaining the covariance, analytic computation is much faster
Advances in upcoming weak lensing surveys pose new challenges for an accurate modeling of the lensing observables. With their large sky coverage, common approximations based on a flat-sky geometry cannot be used anymore to evaluate all measurable ang
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of top
We compare predictions for galaxy-galaxy lensing profiles and clustering from the Henriques et al. (2015) public version of the Munich semi-analytical model of galaxy formation (SAM) and the IllustrisTNG suite, primarily TNG300, with observations fro
The significant increase in precision that will be achieved by Stage IV cosmic shear surveys means that several currently used theoretical approximations may cease to be valid. An additional layer of complexity arises from the fact that many of these