ترغب بنشر مسار تعليمي؟ اضغط هنا

Deciphering the Nature of the Pulsar Wind Nebula CTB 87 with XMM-Newton

173   0   0.0 ( 0 )
 نشر من قبل Benson Guest
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CTB 87 (G74.9+1.2) is an evolved supernova remnant (SNR) which hosts a peculiar pulsar wind nebula (PWN). The X-ray peak is offset from that observed in radio and lies towards the edge of the radio nebula. The putative pulsar, CXOU~J201609.2+371110, was first resolved with textit{Chandra} and is surrounded by a compact and a more extended X-ray nebula. Here we use a deep {textit{XMM-Newton}} observation to examine the morphology and evolutionary stage of the PWN and to search for thermal emission expected from a supernova shell or reverse shock interaction with supernova ejecta. We do not find evidence of thermal X-ray emission from the SNR and place an upper limit on the electron density of 0.05~cm$^{-3}$ for a plasma temperature $kTsim 0.8$ keV. The morphology and spectral properties are consistent with a $sim$20~kyr-old relic PWN expanding into a stellar wind-blown bubble. We also present the first X-ray spectral index map from the PWN and show that we can reproduce its morphology by means of 2D axisymmetric relativistic hydrodynamical simulations.



قيم البحث

اقرأ أيضاً

92 - T.A. Lozinskaya 2005
We investigated the kinematics of the pulsar wind nebula (PWN) associated with PSR B1951+32 in the old supernova remnant CTB 80 using the Fabry-Perot interferometer of the 6m Special Astrophysical Observatory telescope. In addition to the previously known expansion of the system of bright filaments with a velocity of 100-200km/s, we detected weak high-velocity features in the H-alpha line at least up to velocities of 400-450km/s. We analyzed the morphology of the PWN in the H-alpha, [SII], and [OIII] lines using HST data and discuss its nature. The shape of the central filamentary shell, which is determined by the emission in the [OIII] line and in the radio continuum, is shown to be consistent with the bow-shock model for a significant (about 60 degrees) inclination of the pulsars velocity vector to the plane of the sky. In this case, the space velocity of the pulsar is twice higher than its tangential velocity, i.e., it reaches ~500 km/s, and PSR B1951+32 is the first pulsar whose line-of-sight velocity (of about 400 km/s) has been estimated from the PWN observations. The shell-like H-alpha-structures outside the bow shock front in the east and the west may be associated with both the pulsars jets and the pulsar-wind breakthrough due to the layered structure of the extended CTB 80 shell.
We present a study of the composite supernova remnant G0.9+0.1 based on observations by XMM-Newton. The EPIC spectrum shows diffuse X-ray emission from the region corresponding to the radio shell. The X-ray spectrum of the whole Pulsar Wind Nebula is well fitted by an absorbed power-law model with a photon index Gamma ~ 1.9 and a 2-10 keV luminosity of about 6.5 X 10^34 d^2_10 erg s^-1 (d_10 is the distance in units of 10 kpc). However, there is a clear softening of the X-ray spectrum with distance from the core, which is most probably related to the finite lifetime of the synchrotron emitting electrons. This is fully consistent with the plerionic interpretation of the Pulsar Wind Nebula, in which an embedded pulsar injects energetic electrons into its surrounding region. At smaller scales, the eastern part of the arc-like feature, which was first revealed by Chandra observations, shows indications of a hard X-ray spectrum with a corresponding small photon index (Gamma=1.0 +- 0.7), while the western part presents a significantly softer spectrum (Gamma=3.2 +- 0.7). A possible explanation for this feature is fast rotation and subsequent Doppler boosting of electrons: the eastern part of the torus has a velocity component pointing towards the observer, while the western part has a velocity component in the opposite direction pointing away from the observer.
142 - Chulhoon Chang 2011
We observed the young pulsar J1357--6429 with the {it Chandra} and {it XMM-Newton} observatories. The pulsar spectrum fits well a combination of absorbed power-law model ($Gamma=1.7pm0.6$) and blackbody model ($kT=140^{+60}_{-40}$ eV, $Rsim2$ km at t he distance of 2.5 kpc). Strong pulsations with pulsed fraction of $42%pm5%$, apparently associated with the thermal component, were detected in 0.3--1.1 keV. Surprisingly, pulsed fraction at higher energies, 1.1--10 keV, appears to be smaller, $23%pm4%$. The small emitting area of the thermal component either corresponds to a hotter fraction of the neutron star (NS) surface or indicates inapplicability of the simplistic blackbody description. The X-ray images also reveal a pulsar-wind nebula (PWN) with complex, asymmetric morphology comprised of a brighter, compact PWN surrounded by the fainter, much more extended PWN whose spectral slopes are $Gamma=1.3pm0.3$ and $Gamma=1.7pm0.2$, respectively. The extended PWN with the observed flux of $sim7.5times10^{-13}$ erg s$^{-1}$ cm$^{-2}$ is a factor of 10 more luminous then the compact PWN. The pulsar and its PWN are located close to the center of the extended TeV source HESS J1356--645, which strongly suggests that the VHE emission is powered by electrons injected by the pulsar long ago. The X-ray to TeV flux ratio, $sim0.1$, is similar to those of other relic PWNe. We found no other viable candidates to power the TeV source. A region of diffuse radio emission, offset from the pulsar toward the center of the TeV source, could be synchrotron emission from the same relic PWN rather than from the supernova remnant.
We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures - two $approx 0.2 d_{250}$ pc long lateral tails and a segmented axial tail of $approx 0.05 d_{250}$ pc length, where $d_{250}=d/(250 {rm pc})$. The photon indices of the power law spectra of the lateral tails, $Gamma approx 1$, are significantly harder than those of the pulsar ($Gamma approx 1.5$) and the axial tail ($Gamma approx 1.6$). There is no significant diffuse X-ray emission between the lateral tails -- the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indication of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scenario, the lateral tails could represent an azimuthally asymmetric shell whose hard emission is caused by the Fermi acceleration mechanism of colliding winds. In another scenario, the lateral tails could be luminous, bent polar outflows, while the blobs in the axial tail could represent a crushed torus. In a resemblance to planetary magnetotails, the blobs of the axial tail might also represent short-lived plasmoids which are formed by magnetic field reconnection in the relativistic plasma of the pulsar wind tail.
100 - M. N. Iacolina 2015
The relativistic double neutron star binary PSR J0737-3039 shows clear evidence of orbital phase-dependent wind-companion interaction, both in radio and X-rays. In this paper we present the results of timing analysis of PSR J0737-3039 performed durin g 2006 and 2011 XMM-Newton Large Programs that collected ~20,000 X-ray counts from the system. We detected pulsations from PSR J0737-3039A (PSR A) through the most accurate timing measurement obtained by XMM-Newton so far, the spin period error being of 2x10^-13 s. PSR As pulse profile in X-rays is very stable despite significant relativistic spin precession that occurred within the time span of observations. This yields a constraint on the misalignment between the spin axis and the orbital momentum axis Delta_A ~6.6^{+1.3}_{-5.4} deg, consistent with estimates based on radio data. We confirmed pulsed emission from PSR J0737-3039B (PSR B) in X-rays even after its disappearance in radio. The unusual phenomenology of PSR Bs X-ray emission includes orbital pulsed flux and profile variations as well as a loss of pulsar phase coherence on time scales of years. We hypothesize that this is due to the interaction of PSR As wind with PSR Bs magnetosphere and orbital-dependent penetration of the wind plasma onto PSR B closed field lines. Finally, the analysis of the full XMM-Newton dataset provided evidences of orbital flux variability (~7%) for the first time, involving a bow-shock scenario between PSR As wind and PSR Bs magnetosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا