ترغب بنشر مسار تعليمي؟ اضغط هنا

BPS states, conserved charges and centres of symmetric group algebras

67   0   0.0 ( 0 )
 نشر من قبل Sanjaye Ramgoolam
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In $mathcal{N}=4$ SYM with $U(N)$ gauge symmetry, the multiplicity of half-BPS states with fixed dimension can be labelled by Young diagrams and can be distinguished using conserved charges corresponding to Casimirs of $U(N)$. The information theoretic study of LLM geometries and superstars in the dual $AdS_5 times S^5$ background has raised a number of questions about the distinguishability of Young diagrams when a finite set of Casimirs are known. Using Schur-Weyl duality relations between unitary groups and symmetric groups, these questions translate into structural questions about the centres of symmetric group algebras. We obtain analytic and computational results about these structural properties and related Shannon entropies, and generate associated number sequences. A characterization of Young diagrams in terms of content distribution functions relates these number sequences to diophantine equations. These content distribution functions can be visualized as connected, segmented, open strings in content space.



قيم البحث

اقرأ أيضاً

We discuss a set of heterotic and type II string theory compactifications to 1+1 dimensions that are characterized by factorized internal worldsheet CFTs of the form $V_1otimes bar V_2$, where $V_1, V_2$ are self-dual (super) vertex operator algebras . In the cases with spacetime supersymmetry, we show that the BPS states form a module for a Borcherds-Kac-Moody (BKM) (super)algebra, and we prove that for each model the BKM (super)algebra is a symmetry of genus zero BPS string amplitudes. We compute the supersymmetric indices of these models using both Hamiltonian and path integral formalisms. The path integrals are manifestly automorphic forms closely related to the Borcherds-Weyl-Kac denominator. Along the way, we comment on various subtleties inherent to these low-dimensional string compactifications.
We introduce an affine Schur algebra via the affine Hecke algebra associated to Weyl group of affine type C. We establish multiplication formulas on the affine Hecke algebra and affine Schur algebra. Then we construct monomial bases and canonical bas es for the affine Schur algebra. The multiplication formula allows us to establish a stabilization property of the family of affine Schur algebras that leads to the modified version of an algebra ${mathbf K}^{mathfrak c}_n$. We show that ${mathbf K}^{mathfrak c}_n$ is a coideal subalgebra of quantum affine algebra ${bf U}(hat{mathfrak{gl}}_n)$, and $big({mathbf U}(hat{ mathfrak{gl}}_n), {mathbf K}^{mathfrak c}_n)$ forms a quantum symmetric pair. The modified coideal subalgebra is shown to admit monomial and stably canonical bases. We also formulate several variants of the affine Schur algebra and the (modified) coideal subalgebra above, as well as their monomial and canonical bases. This work provides a new and algebraic approach which complements and sheds new light on our previous geometric approach on the subject. In the appendix by four of the authors, new length formulas for the Weyl groups of affine classical types are obtained in a symmetrized fashion.
45 - Hai Lin , Keyou Zeng 2017
BPS coherent states closely resemble semiclassical states and they have gravity dual descriptions in terms of semiclassical geometries. The half BPS coherent states have been well studied, however less is known about quarter BPS coherent states. Here we provide a construction of quarter BPS coherent states. They are coherent states built with two matrix fields, generalizing the half BPS case. These states are both the eigenstates of annihilation operators and in the kernel of dilatation operator. Another useful labeling of quarter BPS states is by representations of Brauer algebras and their projection onto a subalgebra $mathbb{C}[S_ntimes S_m]$. Here, the Schur-Weyl duality for the Walled Brauer algebra plays an important role in organizing the operators. One interesting subclass of these Brauer states are labeled by representations involving two Young tableaux. We obtain the overlap between quarter BPS Brauer states and quarter BPS coherent states, where the Schur polynomials are used. We also derive superposition formulas transforming a truncated version of quarter BPS coherent states to quarter BPS Brauer states. The entanglement entropy of Brauer states as well as the overlap between Brauer states and squeezed states are also computed.
In any generally covariant theory of gravity, we show the relationship between the linearized asymptotically conserved current and its non-linear completion through the identically conserved current. Our formulation for conserved charges is based on the Lagrangian description, and so completely covariant. By using this result, we give a prescription to define quasi-local conserved charges in any higher derivative gravity. As applications of our approach, we demonstrate the angular momentum invariance along the radial direction of black holes and reproduce more efficiently the linearized potential on the asymptotic AdS space.
Let G be a locally compact group, and ZL1(G) be the centre of its group algebra. We show that when $G$ is compact ZL1(G) is not amenable when G is either nonabelian and connected, or is a product of infinitely many finite nonabelian groups. We also, study, for some non-compact groups G, some conditions which imply amenability and hyper-Tauberian property, for ZL1(G).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا