ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy Production in Affine Inflation

150   0   0.0 ( 0 )
 نشر من قبل Salah Nasri
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiple scalar fields nonminimally interacting through pure affine gravity are considered to generate primordial perturbations during an inflationary phase. The couplings considered give rise to two distinct sources of entropy perturbations that may not be suppressed in the long wavelength limit. The first is merely induced by the presence of more than one scalar and arises even in the minimal coupling limit. The second source however is restricted to nonminimal interaction. Unlike the case of metric gravity, and due to the absence of anisotropic stresses, the second source disappears for single scalar, showing that nonminimal couplings become relevant to non-adiabatic perturbations only when more than one scalar field are considered. Hence the notion of adiabaticity is not affected by the transition to minimal coupling contrary to the metric gravity case where it is confused by changing the frames. Precise data that might be able to neatly track different sources of isocurvature modes, if any, must not only distinguish between different models of inflation but also determine the most viable approach to gravity which underlies the inflationary dynamics itself.

قيم البحث

اقرأ أيضاً

181 - Hemza Azri , Durmus Demir 2017
Affine gravity, a gravity theory based on affine connection with no notion of metric, supports scalar field dynamics only if scalar fields have non-vanishing potential. The non-vanishing vacuum energy ensures that the cosmological constant is non-van ishing. It also ensures that the energy-momentum tensor of vacuum gives the dynamically generated metric tensor. We construct this affine setup and study primordial inflation in it. We study inflationary dynamics in affine gravity and general relativity, comparatively. We show that non-minimally coupled inflaton dynamics can be transformed into a minimally-coupled one with a modified potential. We also show that there is one unique frame in affine gravity, as opposed to the Einstein and Jordan frames in general relativity. Future observations with higher accuracy may be able to test the affine gravity.
57 - Hemza Azri , Durmus Demir 2018
Induced gravity, metrical gravity in which gravitational constant arises from vacuum expectation value of a heavy scalar, is known to suffer from Jordan frame vs. Einstein frame ambiguity, especially in inflationary dynamics. Induced gravity in affin e geometry, as we show here, leads to an emergent metric and gravity scale, with no Einstein-Jordan ambiguity. While gravity is induced by the vacuum expectation value of the scalar field, nonzero vacuum energy facilitates generation of the metric. Our analysis shows that induced gravity results in a relatively large tensor-to-scalar ratio in both metrical and affine gravity setups. However, the fact remains that the induced affine gravity provides an ambiguity-free framework.
58 - Hemza Azri 2018
Here we concisely review the nonminimal coupling dynamics of a single scalar field in the context of purely affine gravity and extend the study to multifield dynamics. The coupling is performed via an affine connection and its associated curvature wi thout referring to any metric tensor. The latter arises a posteriori and it may gain an emergent character like the scale of gravity. What is remarkable in affine gravity is the transition from nonminimal to minimal couplings which is realized by only field redefinition of the scalar fields. Consequently, the inflationary models gain a unique description in this context where the observed parameters, like the scalar tilt and the tensor-to-scalar ratio, are invariant under field reparametrization. Overall, gravity in its affine approach is expected to reveal interesting and rich phenomenology in cosmology and astroparticle physics.
81 - Keigo Shimada , Katsuki Aoki , 2018
We classify the metric-affine theories of gravitation, in which the metric and the connections are treated as independent variables, by use of several constraints on the connections. Assuming the Einstein-Hilbert action, we find that the equations fo r the distortion tensor (torsion and non-metricity) become algebraic, which means that those variables are not dynamical. As a result, we can rewrite the basic equations in the form of Riemannian geometry. Although all classified models recover the Einstein gravity in the Palatini formalism (in which we assume there is no coupling between matter and the connections), but when matter field couples to the connections, the effective Einstein equations include an additional hyper energy-momentum tensor obtained from the distortion tensor. Assuming a simple extension of a minimally coupled scalar field in metric-affine gravity, we analyze an inflationary scenario. Even if we adopt a chaotic inflation potential, certain parameters could satisfy observational constraints. Furthermore, we find that a simple form of Galileon scalar field in metric-affine could cause G-inflation.
278 - Joan Sola , Hao Yu 2019
We study particle production and the corresponding entropy increase in the context of cosmology with dynamical vacuum. We focus on the particular form that has been called running vacuum model (RVM), which is known to furnish a successful description of the overall current observations at a competitive level with the concordance $Lambda$CDM model. It also provides an elegant global explanation of the cosmic history from a non-singular initial state in the very early universe up to our days and further into the final de Sitter era. The model has no horizon problem and provides an alternative explanation for the early inflation and its graceful exit, as well as a powerful mechanism for generating the large entropy of the current universe. The energy-momentum tensor of matter is generally non-conserved in such context owing to particle creation or annihilation. We analyze general thermodynamical aspects of particle and entropy production in the RVM. We first study the entropy of particles in the comoving volume during the early universe and late universe. Then, in order to obtain a more physical interpretation, we pay attention to the entropy contribution from the cosmological apparent horizon, its interior and its surface. On combining the inner volume entropy with the entropy on the horizon, we elucidate with detailed calculations whether the evolution of the entropy of the RVM universe satisfies the Generalized Second Law of Thermodynamics. We find it is so and we prove that the essential reason for it is the existence of a positive cosmological constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا