ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological phase transition between distinctWeyl semimetal states in MoTe2

172   0   0.0 ( 0 )
 نشر من قبل Anmin Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental evidence of an intriguing phase transition between distinct topological states in the type-II Weyl semimetal MoTe2. We observe anomalies in the Raman phonon frequencies and linewidths as well as electronic quasielastic peaks around 70 K, which, together with structural, thermodynamic measurements, and electron-phonon coupling calculations, demonstrate a temperature-induced transition between two topological phases previously identified by contrasting spectroscopic measurements. An analysis of experimental data suggests electron-phonon coupling as the main driving mechanism for the change of key topological characters in the electronic structure of MoTe2.We also find the phase transition to be sensitive to sample conditions distinguished by synthesis methods. These discoveries of temperature and material condition-dependent topological phase evolutions and transitions in MoTe2 advance the fundamental understanding of the underlying physics and enable an effective approach to tuning Weyl semimetal states for technological applications.

قيم البحث

اقرأ أيضاً

Recent development of ultrashort laser pulses allows for optical control of structural and electronic properties of complex quantum materials. The layered transition metal dichalcogenide MoTe2, which can crystalize into several different structures w ith distinct topological and electronic properties, provides possibilities to control or switch between different phases. In this study we report a photo-induced sub-picosecond structural transition between the type-II Weyl semimetal phase and normal semimetal phase in bulk crystalline MoTe2 by using ultrafast pump-probe and time-resolved second harmonic generation spectroscopy. The phase transition is most clearly characterized by the dramatic change of the shear oscillation mode and the intensity loss of second harmonic generation. This work opens up new possibilities for ultrafast manipulation of the topological properties of solids, enabling potentially practical applications for topological switch device with ultrafast excitations.
105 - D. F. Liu , Q. N. Xu , E. K. Liu 2021
Topological Weyl semimetals (TWSs) are exotic crystals possessing emergent relativistic Weyl fermions connected by unique surface Fermi-arcs (SFAs) in their electronic structures. To realize the TWS state, certain symmetry (such as the inversion or t ime reversal symmetry) must be broken, leading to a topological phase transition (TPT). Despite the great importance in understanding the formation of TWSs and their unusual properties, direct observation of such a TPT has been challenging. Here, using a recently discovered magnetic TWS Co3Sn2S2, we were able to systematically study its TPT with detailed temperature dependence of the electronic structures by angle-resolved photoemission spectroscopy. The TPT with drastic band structures evolution was clearly observed across the Curie temperature (TC = 177 K), including the disappearance of the characteristic SFAs and the recombination of the spin-split bands that leads to the annihilation of Weyl points with opposite chirality. These results not only reveal important insights on the interplay between the magnetism and band topology in TWSs, but also provide a new method to control their exotic physical properties.
We present a holographic model of a topological Weyl semimetal. A key ingredient is a time-reversal breaking parameter and a mass deformation. Upon varying the ratio of mass to time-reversal breaking parameter the model undergoes a quantum phase tran sition from a topologically nontrivial semimetal to a trivial one. The topological nontrivial semimetal is characterised by the presence of an anomalous Hall effect. The results can be interpreted in terms of the holographic renormalization group (RG) flow leading to restoration of time-reversal at the end point of the RG flow in the trivial phase.
Much of the dramatic growth in research on topological materials has focused on topologically protected surface states. While the domain walls of topological materials such as Weyl semimetals with broken inversion or time-reversal symmetry can provid e a hunting ground for exploring topological interfacial states, such investigations have received little attention to date. Here, utilizing in-situ cryogenic transmission electron microscopy combined with first-principles calculations, we discover intriguing domain-wall structures in MoTe2, both between polar variants of the low-temperature(T) Weyl phase, and between this and the high-T high-order topological phase. We demonstrate how polar domain walls can be manipulated with electron beams and show that phase domain walls tend to form superlattice-like structures along the c axis. Scanning tunneling microscopy indicates a possible signature of a conducting hinge state at phase domain walls. Our results open avenues for investigating topological interfacial states and unveiling multifunctional aspects of domain walls in topological materials.
158 - Chuanwu Cao , Xin Liu , Xiao Ren 2018
We report the first observation of the non-magnetic Barkhausen effect in van der Waals layered crystals, specifically, between the Td and 1T phases in type-II Weyl semimetal MoTe2. Thinning down the MoTe2 crystal from bulk material to about 25nm resu lts in a drastic strengthening of the hysteresis in the phase transition, with the difference in critical temperature increasing from 40K to more than 300K. The Barkhausen effect appears for thin samples and the temperature range of the Barkhausen zone grows approximately linearly with reducing sample thickness, pointing to a surface origin of the phase pinning defects. The distribution of the Barkhausen jumps shows a power law behavior, with its critical exponent {alpha} = 1.27, in good agreement with existing scaling theory. Temperature-dependent Raman spectroscopy on MoTe2 crystals of various thicknesses shows results consistent with our transport measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا