ترغب بنشر مسار تعليمي؟ اضغط هنا

Threshold effects in SO(10) models with one intermediate breaking scale

79   0   0.0 ( 0 )
 نشر من قبل Marcus Pernow
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the successes of the Standard Model of particle physics, it is known to suffer from a number of deficiencies. Several of these can be addressed within non-supersymmetric theories of grand unification based on $mathrm{SO}(10)$. However, achieving gauge coupling unification in such theories is known to require additional physics below the unification scale, such as symmetry breaking in multiple steps. Many such models are disfavored due to bounds on the proton lifetime. Corrections arising from threshold effects can, however, modify these conclusions. We analyze all seven relevant breaking chains with one intermediate symmetry breaking scale, assuming the survival hypothesis for the scalar masses. Two are allowed by proton lifetime and two are disfavored by a failure to unify the gauge couplings. The remaining three unify at a too low scale, but can be salvaged by various amounts of threshold corrections. We parametrize this and thereby rank the models by the size of the threshold corrections required to save them.

قيم البحث

اقرأ أيضاً

We discuss the possibility of unifying in a simple and economical manner the Yukawa couplings of third generation fermions in a non-supersymmetric SO(10) model with an intermediate symmetry breaking, focusing on two possible patterns with intermediat e Pati-Salam and minimal left-right groups. For this purpose, we start with a two Higgs doublet model at the electroweak scale and assume a minimal Yukawa sector at the high energy scales. We first enforce gauge coupling unification at the two-loop level by including the threshold corrections in the renormalisation group running which are generated by the heavy fields that appear at the intermediate symmetry breaking scale. We then study the running of the Yukawa couplings of the top quark, bottom quark and tau lepton at two-loops in these two breaking schemes, when the appropriate matching conditions are imposed. We find that the unification of the third family Yukawa couplings can be achieved while retaining a viable spectrum, provided that the ratio of the vacuum expectation values of the two Higgs doublet fields is large, $tanbeta approx 60$.
63 - F. Buccella , C. A. Savoy 2002
We study the supersymmetric spontaneous symmetry breaking of SO(10) into SU(3)xSU(2)xU(1) for the most physically interesting cases of SU(5) or flipped SU(5)xU(1) intermediate symmetries. The first case is more easily realized while the second one re quires a fine-tuning condition on the parameters of the superpotential. This is because in the case of SU(5) symmetry there is at most one singlet of the residual symmetry in each SO(10) irreducible representation. We also point out on more general grounds in supersymmetric GUTs that some intermediate symmetries can be exactly realized and others can only be approximated by fine-tuning. In the first category, there could occur some tunneling between the vacua with exact and approximate intermediate symmetry. The flipped SU(5)xU(1) symmetry improves the unification of gauge couplings if (B-L) is broken by (B-L)=1 scalars yielding right handed neutrino masses below 10^{14} GeV}.
We calculate the dependence on intermediate scale of the gaugino mass ratios upon breaking of SO(10) into the SM via an intermediate group $H$. We see that the ratios change significantly when the intermediate scale is low (say, $10^8$ GeV or 1 Tev) compared to the case when the two breakings occur at the same scale.
We combine $SO(10)$ Grand Unified Theories (GUTs) with $A_4$ modular symmetry and present a comprehensive analysis of the resulting quark and lepton mass matrices for all the simplest cases. We focus on the case where the three fermion families in th e 16 dimensional spinor representation form a triplet of $Gamma_3simeq A_4$, with a Higgs sector comprising a single Higgs multiplet $H$ in the ${mathbf{10}}$ fundamental representation and one Higgs field $overline{Delta}$ in the ${mathbf{overline{126}}}$ for the minimal models, plus and one Higgs field $Sigma$ in the ${mathbf{120}}$ for the non-minimal models, all with specified modular weights. The neutrino masses are generated by the type-I and/or type II seesaw mechanisms and results are presented for each model following an intensive numerical analysis where we have optimized the free parameters of the models in order to match the experimental data. For the phenomenologically successful models, we present the best fit results in numerical tabular form as well as showing the most interesting graphical correlations between parameters, including leptonic CP phases and neutrinoless double beta decay, which have yet to be measured, leading to definite predictions for each of the models.
Gauge coupling unification and the stability of the Higgs vacuum are among two of the cherished features of low-energy supersymmetric models. Putting aside questions of naturalness, supersymmetry might only be realised in nature at very high energy s cales. If this is the case, the preservation of gauge coupling unification and the stability of the Higgs vacuum would certainly require new physics, but it need not necessarily be at weak scale energies. New physics near the unification scale could in principle ensure Grand Unification, while new physics below $mu sim 10^{10}$ GeV could ensure the stability of the Higgs vacuum. Surprisingly however, we find that in the context of a supersymmetric SO(10) Grand Unified Theory, gauge coupling unification and the Higgs vacuum stability, when taken in conjunction with existing phenomenological constraints, require the presence of $mathcal{O}$(TeV)-scale physics. This weak-scale physics takes the form of a complex scalar SU(2)$_L$ triplet with zero hypercharge, originating from the $mathbf{210}$ of SO(10).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا