ترغب بنشر مسار تعليمي؟ اضغط هنا

Cracking In-Memory Database Index A Case Study for Adaptive Radix Tree Index

58   0   0.0 ( 0 )
 نشر من قبل Yidong Song
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Indexes provide a method to access data in databases quickly. It can improve the response speed of subsequent queries by building a complete index in advance. However, it also leads to a huge overhead of the continuous updating during creating the index. An in-memory database usually has a higher query processing performance than disk databases and is more suitable for real-time query processing. Therefore, there is an urgent need to reduce the index creation and update cost for in-memory databases. Database cracking technology is currently recognized as an effective method to reduce the index initialization time. However, conventional cracking algorithms are focused on simple column data structure rather than those complex index structure for in-memory databases. In order to show the feasibility of in-memory database index cracking and promote to future more extensive research, this paper conducted a case study on the Adaptive Radix Tree (ART), a popular tree index structure of in-memory databases. On the basis of carefully examining the ART index construction overhead, an algorithm using auxiliary data structures to crack the ART index is proposed.



قيم البحث

اقرأ أيضاً

Very large volumes of spatial data increasingly become available and demand effective management. While there has been decades of research on spatial data management, few works consider the current state of commodity hardware, having relatively large memory and the ability of parallel multi-core processing. In this work, we re-consider the design of spatial indexing under this new reality. Specifically, we propose a main-memory indexing approach for objects with spatial extent, which is based on a classic regular space partitioning into disjoint tiles. The novelty of our index is that the contents of each tile are further partitioned into four classes. This second-level partitioning not only reduces the number of comparisons required to compute the results, but also avoids the generation and elimination of duplicate results, which is an inherent problem of spatial indexes based on disjoint space partitioning. The spatial partitions defined by our indexing scheme are totally independent, facilitating effortless parallel evaluation, as no synchronization or communication between the partitions is necessary. We show how our index can be used to efficiently process spatial range queries and drastically reduce the cost of the refinement step of the queries. In addition, we study the efficient processing of numerous range queries in batch and in parallel. Extensive experiments on real datasets confirm the efficiency of our approaches.
Indexes are models: a B-Tree-Index can be seen as a model to map a key to the position of a record within a sorted array, a Hash-Index as a model to map a key to a position of a record within an unsorted array, and a BitMap-Index as a model to indica te if a data record exists or not. In this exploratory research paper, we start from this premise and posit that all existing index structures can be replaced with other types of models, including deep-learning models, which we term learned indexes. The key idea is that a model can learn the sort order or structure of lookup keys and use this signal to effectively predict the position or existence of records. We theoretically analyze under which conditions learned indexes outperform traditional index structures and describe the main challenges in designing learned index structures. Our initial results show, that by using neural nets we are able to outperform cache-optimized B-Trees by up to 70% in speed while saving an order-of-magnitude in memory over several real-world data sets. More importantly though, we believe that the idea of replacing core components of a data management system through learned models has far reaching implications for future systems designs and that this work just provides a glimpse of what might be possible.
Due to the coarse granularity of data accesses and the heavy use of latches, indices in the B-tree family are not efficient for in-memory databases, especially in the context of todays multi-core architecture. In this paper, we present PI, a Parall el in-memory skip list based Index that lends itself naturally to the parallel and concurrent environment, particularly with non-uniform memory access. In PI, incoming queries are collected, and disjointly distributed among multiple threads for processing to avoid the use of latches. For each query, PI traverses the index in a Breadth-First-Search (BFS) manner to find the list node with the matching key, exploiting SIMD processing to speed up the search process. In order for query processing to be latch-free, PI employs a light-weight communication protocol that enables threads to re-distribute the query workload among themselves such that each list node that will be modified as a result of query processing will be accessed by exactly one thread. We conducted extensive experiments, and the results show that PI can be up to three times as fast as the Masstree, a state-of-the-art B-tree based index.
92 - Liang Li , Guoren Wang , Gang Wu 2018
In-memory databases (IMDBs) are gaining increasing popularity in big data applications, where clients commit updates intensively. Specifically, it is necessary for IMDBs to have efficient snapshot performance to support certain special applications ( e.g., consistent checkpoint, HTAP). Formally, the in-memory consistent snapshot problem refers to taking an in-memory consistent time-in-point snapshot with the constraints that 1) clients can read the latest data items and 2) any data item in the snapshot should not be overwritten. Various snapshot algorithms have been proposed in academia to trade off throughput and latency, but industrial IMDBs such as Redis adhere to the simple fork algorithm. To understand this phenomenon, we conduct comprehensive performance evaluations on mainstream snapshot algorithms. Surprisingly, we observe that the simple fork algorithm indeed outperforms the state-of-the-arts in update-intensive workload scenarios. On this basis, we identify the drawbacks of existing research and propose two lightweight improvements. Extensive evaluations on synthetic data and Redis show that our lightweight improvements yield better performance than fork, the current industrial standard, and the representative snapshot algorithms from academia. Finally, we have opensourced the implementation of all the above snapshot algorithms so that practitioners are able to benchmark the performance of each algorithm and select proper methods for different application scenarios.
176 - Hadj Mahboubi 2008
XML data warehouses form an interesting basis for decision-support applications that exploit complex data. However, native-XML database management systems (DBMSs) currently bear limited performances and it is necessary to research for ways to optimiz e them. In this paper, we propose a new join index that is specifically adapted to the multidimensional architecture of XML warehouses. It eliminates join operations while preserving the information contained in the original warehouse. A theoretical study and experimental results demonstrate the efficiency of our join index. They also show that native XML DBMSs can compete with XML-compatible, relational DBMSs when warehousing and analyzing XML data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا