ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Complexity of Minimum-Cost Networked Estimation of Self-Damped Dynamical Systems

102   0   0.0 ( 0 )
 نشر من قبل Mohammadreza Doostmohammadian
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the optimal design of networked estimators to minimize the communication/measurement cost under the networked observability constraint. This problem is known as the minimum-cost networked estimation problem, which is generally claimed to be NP-hard. The main contribution of this work is to provide a polynomial-order solution for this problem under the constraint that the underlying dynamical system is self-damped. Using structural analysis, we subdivide the main problem into two NP-hard subproblems known as (i) optimal sensor selection, and (ii) minimum-cost communication network. For self-damped dynamical systems, we provide a polynomial-order solution for subproblem (i). Further, we show that the subproblem (ii) is of polynomial-order complexity if the links in the communication network are bidirectional. We provide an illustrative example to explain the methodologies.



قيم البحث

اقرأ أيضاً

This paper considers the problem of simultaneous sensor fault detection, isolation, and networked estimation of linear full-rank dynamical systems. The proposed networked estimation is a variant of single time-scale protocol and is based on (i) conse nsus on textit{a-priori} estimates and (ii) measurement innovation. The necessary connectivity condition on the sensor network and stabilizing block-diagonal gain matrix is derived based on our previous works. Considering additive faults in the presence of system and measurement noise, the estimation error at sensors is derived and proper residuals are defined for fault detection. Unlike many works in the literature, no simplifying upper-bound condition on the noise is considered and we assume Gaussian system/measurement noise. A probabilistic threshold is then defined for fault detection based on the estimation error covariance norm. Finally, a graph-theoretic sensor replacement scenario is proposed to recover possible loss of networked observability due to removing the faulty sensor. We examine the proposed fault detection and isolation scheme on an illustrative academic example to verify the results and make a comparison study with related literature.
Classical distributed estimation scenarios typically assume timely and reliable exchanges of information over the sensor network. This paper, in contrast, considers single time-scale distributed estimation via a sensor network subject to transmission time-delays. The proposed discrete-time networked estimator consists of two steps: (i) consensus on (delayed) a-priori estimates, and (ii) measurement update. The sensors only share their a-priori estimates with their out-neighbors over (possibly) time-delayed transmission links. The delays are assumed to be fixed over time, heterogeneous, and known. We assume distributed observability instead of local observability, which significantly reduces the communication/sensing loads on sensors. Using the notions of augmented matrices and Kronecker product, the convergence of the proposed estimator over strongly-connected networks is proved for a specific upper-bound on the time-delay.
Topology inference for networked dynamical systems (NDSs) plays a crucial role in many areas. Knowledge of the system topology can aid in detecting anomalies, spotting trends, predicting future behavior and so on. Different from the majority of pione ering works, this paper investigates the principles and performances of topology inference from the perspective of node causality and correlation. Specifically, we advocate a comprehensive analysis framework to unveil the mutual relationship, convergence and accuracy of the proposed methods and other benchmark methods, i.e., the Granger and ordinary least square (OLS) estimators. Our method allows for unknown observation noises, both asymptotic and marginal stabilities for NDSs, while encompasses a correlation-based modification design to alleviate performance degradation in small observation scale. To explicitly demonstrate the inference performance of the estimators, we leverage the concentration measure in Gaussian space, and derive the non-asymptotic rates of the inference errors for linear time-invariant (LTI) cases. Considering when the observations are not sufficient to support the estimators, we provide an excitation-based method to infer the one-hop and multi-hop neighbors with probability guarantees. Furthermore, we point out the theoretical results can be extended to switching topologies and nonlinear dynamics cases. Extensive simulations highlight the outperformance of the proposed method.
Estimating the occurrence of packet losses in a networked control systems (NCS) can be used to improve the control performance and to detect failures or cyber-attacks. This study considers simultaneous estimation of the plant state and the packet los s occurrences at each time step. After formulation of the problem, two solutions are proposed. In the first one, an input-output representation of the NCS model is used to design a recursive filter for estimation of the packet loss occurrences. This estimation is then used for state estimation through Kalman filtering. In the second solution, a state space model of NCS is used to design an estimator for both the plant state and the packet loss occurrences which employs a Kalman filter. The effectiveness of the solutions is shown during an example and comparisons are made between the proposed solutions and another solution based on the interacting multiple model estimation method.
In this work, a dynamic system is controlled by multiple sensor-actuator agents, each of them commanding and observing parts of the systems input and output. The different agents sporadically exchange data with each other via a common bus network acc ording to local event-triggering protocols. From these data, each agent estimates the complete dynamic state of the system and uses its estimate for feedback control. We propose a synthesis procedure for designing the agents state estimators and the event triggering thresholds. The resulting distributed and event-based control system is guaranteed to be stable and to satisfy a predefined estimation performance criterion. The approach is applied to the control of a vehicle platoon, where the methods trade-off between performance and communication, and the scalability in the number of agents is demonstrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا