ﻻ يوجد ملخص باللغة العربية
Strong spin-orbit interactions make hole quantum dots central to the quest for electrical spin qubit manipulation enabling fast, low-power, scalable quantum computation. Yet it is important to establish to what extent spin-orbit coupling exposes qubits to electrical noise, facilitating decoherence. Here, taking Ge as an example, we show that group IV gate-defined hole spin qubits generically exhibit optimal operation points, defined by the top gate electric field, at which they are both fast and long-lived: the dephasing rate vanishes to first order in electric field noise along all directions in space, the electron dipole spin resonance strength is maximised, while relaxation is drastically reduced at small magnetic fields. The existence of optimal operation points is traced to group IV crystal symmetry and properties of the Rashba spin-orbit interaction unique to spin-3/2 systems. Our results overturn the conventional wisdom that fast operation implies reduced lifetimes, and suggest group IV hole spin qubits as ideal platforms for ultra-fast, highly coherent scalable quantum computing.
Hole spin qubits in planar Ge heterostructures are one of the frontrunner platforms for scalable quantum computers. In these systems, the spin-orbit interactions permit efficient all-electric qubit control. We propose a minimal design modification of
Spin qubits composed of either one or three electrons are realized in a quantum dot formed at a Si/SiO_2-interface in isotopically enriched silicon. Using pulsed electron spin resonance, we perform coherent control of both types of qubits, addressing
We propose a setup for universal and electrically controlled quantum information processing with hole spins in Ge/Si core/shell nanowire quantum dots (NW QDs). Single-qubit gates can be driven through electric-dipole-induced spin resonance, with spin
We study theoretically the low-energy hole states of Ge/Si core/shell nanowires. The low-energy valence band is quasidegenerate, formed by two doublets of different orbital angular momenta, and can be controlled via the relative shell thickness and v
Hole spin qubits are frontrunner platforms for scalable quantum computers, but state-of-the-art devices suffer from noise originating from the hyperfine interactions with nuclear defects. We show that these interactions have a highly tunable anisotro