ﻻ يوجد ملخص باللغة العربية
We present a simplified dynamic-vacuum-energy model for a time-symmetric Milne-like universe. The big bang singularity in this simplified model, like the one in a previous model, is just a coordinate singularity with finite curvature and energy density. We then calculate the dynamic behavior of scalar metric perturbations and find that these perturbations destabilize the big bang singularity.
Big bang of the Friedmann-Robertson-Walker (FRW)-brane universe is studied. In contrast to the spacelike initial singularity of the usual FRW universe, the initial singularity of the FRW-brane universe is point-like from the viewpoint of causality in
We investigate a particular regularization of big bang singularity, which remains within the domain of 4-dimensional general relativity but allowing for degenerate metrics. We study the geodesics and geodesic congruences in the modified Friedmann-Lem
We propose a gravitational model with a Brans-Dicke-type scalar field having, in the would-be action, a wrong-sign kinetic term and a quartic interaction term. In a cosmological context, we obtain, depending on the boundary conditions, either the Fri
By carrying out a systematic investigation of linear, test quantum fields $hat{phi}(x)$ in cosmological space-times, we show that $hat{phi}(x)$ remain well-defined across the big bang as operator valued distributions in a large class of Friedmann, Le
The production of a background of super-horizon curvature perturbations with the appropriate (red) spectrum needed to trigger the cosmic anisotropies observed on large scales is associated, in the context of pre-big bang inflation, with a phase of gr