ترغب بنشر مسار تعليمي؟ اضغط هنا

A sharp relative-error bound for the Helmholtz $h$-FEM at high frequency

78   0   0.0 ( 0 )
 نشر من قبل Euan Spence
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For the $h$-finite-element method ($h$-FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth $h$ must decrease with the frequency $k$ to maintain accuracy as $k$ increases has been studied since the mid 80s. Nevertheless, there still do not exist in the literature any $k$-explicit bounds on the relative error of the FEM solution (the measure of the FEM error most often used in practical applications), apart from in one dimension. The main result of this paper is the sharp result that, for the lowest fixed-order conforming FEM (with polynomial degree, $p$, equal one), the condition $h^2 k^3$ sufficiently small is sufficient for the relative error of the FEM solution in 2 or 3 dimensions to be controllably small (independent of $k$) for scattering of a plane wave by a nontrapping obstacle and/or a nontrapping inhomogeneous medium. We also prove relative-error bounds on the FEM solution for arbitrary fixed-order methods applied to scattering by a nontrapping obstacle, but these bounds are not sharp for $pgeq 2$. A key ingredient in our proofs is a result describing the oscillatory behaviour of the solution of the plane-wave scattering problem, which we prove using semiclassical defect measures.



قيم البحث

اقرأ أيضاً

120 - Y. Chen , T.Y. Hou , 2021
In this paper, we present a multiscale framework for solving the Helmholtz equation in heterogeneous media without scale separation and in the high frequency regime where the wavenumber $k$ can be large. The main innovation is that our methods achiev e a nearly exponential rate of convergence with respect to the computational degrees of freedom, using a coarse grid of mesh size $O(1/k)$ without suffering from the well-known pollution effect. The key idea is a coarse-fine scale decomposition of the solution space that adapts to the media property and wavenumber; this decomposition is inspired by the multiscale finite element method. We show that the coarse part is of low complexity in the sense that it can be approximated with a nearly exponential rate of convergence via local basis functions, while the fine part is local such that it can be computed efficiently using the local information of the right hand side. The combination of the two parts yields the overall nearly exponential rate of convergence. We demonstrate the effectiveness of our methods theoretically and numerically; an exponential rate of convergence is consistently observed and confirmed. In addition, we observe the robustness of our methods regarding the high contrast in the media numerically.
The paper considers a class of parametric elliptic partial differential equations (PDEs), where the coefficients and the right-hand side function depend on infinitely many (uncertain) parameters. We introduce a two-level a posteriori estimator to con trol the energy error in multilevel stochastic Galerkin approximations for this class of PDE problems. We prove that the two-level estimator always provides a lower bound for the unknown approximation error, while the upper bound is equivalent to a saturation assumption. We propose and empirically compare three adaptive algorithms, where the structure of the estimator is exploited to perform spatial refinement as well as parametric enrichment. The paper also discusses implementation aspects of computing multilevel stochastic Galerkin approximations.
A convergence theory for the $hp$-FEM applied to a variety of constant-coefficient Helmholtz problems was pioneered in the papers [Melenk-Sauter, 2010], [Melenk-Sauter, 2011], [Esterhazy-Melenk, 2012], [Melenk-Parsania-Sauter, 2013]. This theory show s that, if the solution operator is bounded polynomially in the wavenumber $k$, then the Galerkin method is quasioptimal provided that $hk/p leq C_1$ and $pgeq C_2 log k$, where $C_1$ is sufficiently small, $C_2$ is sufficiently large, and both are independent of $k,h,$ and $p$. This paper proves the analogous quasioptimality result for the heterogeneous (i.e. variable coefficient) Helmholtz equation, posed in $mathbb{R}^d$, $d=2,3$, with the Sommerfeld radiation condition at infinity, and $C^infty$ coefficients. We also prove a bound on the relative error of the Galerkin solution in the particular case of the plane-wave scattering problem.
Pavarino proved that the additive Schwarz method with vertex patches and a low-order coarse space gives a $p$-robust solver for symmetric and coercive problems. However, for very high polynomial degree it is not feasible to assemble or factorize the matrices for each patch. In this work we introduce a direct solver for separable patch problems that scales to very high polynomial degree on tensor product cells. The solver constructs a tensor product basis that diagonalizes the blocks in the stiffness matrix for the internal degrees of freedom of each individual cell. As a result, the non-zero structure of the cell matrices is that of the graph connecting internal degrees of freedom to their projection onto the facets. In the new basis, the patch problem is as sparse as a low-order finite difference discretization, while having a sparser Cholesky factorization. We can thus afford to assemble and factorize the matrices for the vertex-patch problems, even for very high polynomial degree. In the non-separable case, the method can be applied as a preconditioner by approximating the problem with a separable surrogate.
We develop a deep learning approach to extract ray directions at discrete locations by analyzing highly oscillatory wave fields. A deep neural network is trained on a set of local plane-wave fields to predict ray directions at discrete locations. The resulting deep neural network is then applied to a reduced-frequency Helmholtz solution to extract the directions, which are further incorporated into a ray-based interior-penalty discontinuous Galerkin (IPDG) method to solve the Helmholtz equations at higher frequencies. In this way, we observe no apparent pollution effects in the resulting Helmholtz solutions in inhomogeneous media. Our 2D and 3D numerical results show that the proposed scheme is very efficient and yields highly accurate solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا