ﻻ يوجد ملخص باللغة العربية
Numerous angle resolved photoemission spectroscopy (ARPES) studies of a wide class of low-density metallic systems, ranging from doped transition metal oxides to quasi two-dimensional interfaces between insulators, exhibit phonon sidebands below the quasi-particle peak as a unique hallmark of polaronic correlations. Here, we single out properties of ARPES spectra that can provide a robust estimate of the effective range (screening length) of the electron-phonon interaction, regardless of the limited experimental resolution, dimensionality and particular features of the electronic structure, facilitating a general methodology for an analysis of a whole class of materials.
We have studied the O 2p valence-band structure of Nb-doped SrTiO3, in which a dilute concentration of electrons are doped into the d0 band insulator, by angle-resolved photoemission spectroscopy (ARPES) measurements. We found that ARPES spectra at t
We present an investigation on electronic structure of 1T-TiTe2 material via high-resolution angle-resolved photoemission spectroscopy (ARPES), utilizing tunable photon energy excitations. The typical semimetal-like electronic structure is observed a
High resolution laser-based angle-resolved photoemission measurements have been carried out on Sb(111) single crystal. Two kinds of Fermi surface sheets are observed that are derived from the topological surface states: one small hexagonal electron-l
Lattice contribution to the electronic self-energy in complex correlated oxides is a fascinating subject that has lately stimulated lively discussions. Expectations of electron-phonon self-energy effects for simpler materials, such as Pd and Al, have
We present a numerical study of the isotope effect on the angle resolved photoemission spectra (ARPES) in the undoped cuprates. By the systematic-error-free Diagrammatic Monte Carlo method, the Lehman spectral function of a single hole in the ttt-J m