ﻻ يوجد ملخص باللغة العربية
The modification of the ground state properties of light atomic nuclei in the nuclear and stellar medium is addressed, using chemical equilibrium constants evaluated from a new analysis of the intermediate energy heavy-ion (Xe$+$Sn) collision data measured by the INDRA collaboration. Three different reactions are considered, mainly differing by the isotopic content of the emission source. The thermodynamic conditions of the data samples are extracted from the measured multiplicities allowing for a parametrization of the in-medium modification, determined with the single hypothesis that the different nuclear species in a given sample correspond to a unique common value for the density of the expanding source. We show that this correction, which was not considered in previous analyses of chemical constants from heavy ion collisions, is necessary, since the observables of the analyzed systems show strong deviations from the expected results for an ideal gas of free clusters. This data set is further compared to a relativistic mean-field model, and seen to be reasonably compatible with a universal correction of the attractive $sigma$-meson coupling.
The equation of state with light clusters for nuclear and stellar matter is determined using chemical equilibrium constants evaluated from the analysis of the recently published (Xe$+$Sn) heavy ion data, corresponding to three reactions with differen
We report results of the first systematic simulation of proton and neutron density distributions in central heavy-ion collisions within the beam energy range of $ E_{rm beam} leq 800 , text{MeV/nucl}$ using pBUU and TDHF models. The symmetric $^text{
We estimate the chemical freeze-out of light nuclear clusters for NICA energies of above 2 A GeV. On the one hand we use results from the low energy domain of about 35 A MeV, where medium effects have been shown to be important to explain experimenta
We present the transverse momentum spectra and rapidity distributions of $pi^{-}$ and K$^0_S$ in Ar+KCl reactions at a beam kinetic energy of 1.756 A GeV measured with the spectrometer HADES. The reconstructed K$^0_S$ sample is characterized by good
We study a problem of $pi$ production in heavy ion collisions in the context of the Isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model. We generated nucleon densities using two different models, the Skyrme-Hartree-Fock (SHF) model a