ﻻ يوجد ملخص باللغة العربية
We have studied the interactions between two heavy mesons ($D^{(*)}$-$D^{(*)}$, $bar D^{(*)}$-$bar D^{(*)}$, $B^{(*)}$-$B^{(*)}$, or $bar B^{(*)}$-$bar B^{(*)}$) within heavy meson chiral effective field theory and investigated possible molecular states. The effective potentials are obtained with Weinbergs scheme up to one-loop level. At the leading order, four body contact interactions and one pion exchange contributions are considered. In addition to two pion exchange diagrams, we include the one-loop chiral corrections to contact terms and one pion exchange diagrams at the next-to-leading order. The effective potentials both in momentum space and coordinate space are investigated and discussed extensively. The possible molecular states are also studied and the binding energies are provided by solving the Schrodinger equation. The results will be helpful for the experimental search for the doubly-heavy molecular states.
We present a general study on exclusive semileptonic decays of heavy (B, D, B_s) to light (pi, rho, K, K^*) mesons in the framework of effective field theory of heavy quark. Transition matrix elements of these decays can be systematically characteriz
A regularization for effective field theory with two propagating heavy particles is constructed. This regularization preserves the low-energy analytic structure, implements a low-energy power counting for the one-loop diagrams, and preserves symmetries respected by dimensional regularization.
We derive the chiral effective Lagrangian for excited heavy-light mesons from QCD under proper approximations. We focus on the chiral partners with $j_l^P=frac{3}{2}^+$ and $j_l^P=frac{3}{2}^-$ which amounts to ($1^+,2^+$) and ($1^-,2^-$) states resp
In terms of the heavy chiral Lagrangian and the unitarized coupled-channel scattering amplitude, interaction between the heavy meson and the light pseudoscalar meson is studied. By looking for the pole of scattering matrix on an appropriate Riemann s
Some of the currently most popular conjectures for the structure of the recently discovered heavy mesons that do not find a place in the quark model quarkonium spectrum are sketched. Furthermore, some observables are identified that should allow one