ﻻ يوجد ملخص باللغة العربية
The next wave of on-device AI will likely require energy-efficient deep neural networks. Brain-inspired spiking neural networks (SNN) has been identified to be a promising candidate. Doing away with the need for multipliers significantly reduces energy. For on-device applications, besides computation, communication also incurs a significant amount of energy and time. In this paper, we propose Shenjing, a configurable SNN architecture which fully exposes all on-chip communications to software, enabling software mapping of SNN models with high accuracy at low power. Unlike prior SNN architectures like TrueNorth, Shenjing does not require any model modification and retraining for the mapping. We show that conventional artificial neural networks (ANN) such as multilayer perceptron, convolutional neural networks, as well as the latest residual neural networks can be mapped successfully onto Shenjing, realizing ANNs with SNNs energy efficiency. For the MNIST inference problem using a multilayer perceptron, we were able to achieve an accuracy of 96% while consuming just 1.26mW using 10 Shenjing cores.
For decades, advances in electronics were directly driven by the scaling of CMOS transistors according to Moores law. However, both the CMOS scaling and the classical computer architecture are approaching fundamental and practical limits, and new com
There is increasing demand to bring machine learning capabilities to low power devices. By integrating the computational power of machine learning with the deployment capabilities of low power devices, a number of new applications become possible. In
Memristor crossbars are circuits capable of performing analog matrix-vector multiplications, overcoming the fundamental energy efficiency limitations of digital logic. They have been shown to be effective in special-purpose accelerators for a limited
Application-specific optical processors have been considered disruptive technologies for modern computing that can fundamentally accelerate the development of artificial intelligence (AI) by offering substantially improved computing performance. Rece
Convolutional Neural Networks (CNNs) are a class of Artificial Neural Networks(ANNs) that employ the method of convolving input images with filter-kernels for object recognition and classification purposes. In this paper, we propose a photonics circu